Presentation of finite Reedy categories as localizations of finite direct categories

Genki Sato

Computer Science and Category Theory (CSCAT) 2025 March 11, 2025

Outline

- Introduction
 - Result
 - Motivation: Homotopy type theory
 - Preliminaries
- 2 Construction of Down(C) $\rightarrow C$
 - Category of chains and skew ladders
 - Category of chains and free-sliding ladders
 - Localization
- Thank you!
 - Bibliography
- Omitted slides (proof of localization)
 - (weak) 1-localization
 - $(\infty, 1)$ -localization

Introduction

- Introduction
 - Result
 - Motivation: Homotopy type theory
 - Preliminaries
- 2 Construction of Down(C) $\rightarrow C$
 - Category of chains and skew ladders
 - Category of chains and free-sliding ladders
 - Localization
- Thank you!
 - Bibliography
- Omitted slides (proof of localization)
 - (weak) 1-localization
 - $(\infty, 1)$ -localization

Introduction: Result

- Introduction
 - Result
 - Motivation: Homotopy type theory
 - Preliminaries
- 2 Construction of Down(C) $\rightarrow C$
 - Category of chains and skew ladders
 - Category of chains and free-sliding ladders
 - Localization
- Thank you
 - Bibliography
- Omitted slides (proof of localization)
 - (weak) 1-localization
 - $(\infty, 1)$ -localization

Main theorem

Theorem (Main result)

Let C be a Reedy category. We construct:

- a direct category Down(C);
- an $(\infty, 1)$ -localizing 1-functor $\mathsf{Down}(C) \to C$.

If C is finite, so is Down(C).

This talk is based on arXiv:2502.05096.

Preceding result

A seemingly stronger result by Lurie:

Theorem (Lurie [5])

Let X be a simplicial set. Then there are:

- a well-founded partially ordered set P;
- an $(\infty, 1)$ -localizing simplicial map $N(P) \to X$.

If X is finite, then finite P exists.

Remark

Lurie did not state well-foundedness, which follows from construction.

- An older highly relevant result by Barwick and Kan [2, 1]:
 - a model structure on relative categories whose cofibrant objects are relative posets, giving a model of $(\infty, 1)$ -categories.

Comparison

Theorem (Main result)

Let C be a Reedy category. We construct:

- a direct category Down(C);
- an $(\infty, 1)$ -localizing 1-functor $\mathsf{Down}(C) \to C$.

If C is finite, so is Down(C).

Theorem (Lurie [5])

Let X be a simplicial set. Then there are:

- a well-founded partially ordered set P;
- an $(\infty, 1)$ -localizing simplicial map $N(P) \to X$.

If X is finite, then finite P exists.

The nerve N(C) is finite $\iff C$ is finite direct.

Introduction: Motivation

- Introduction
 - Result
 - Motivation: Homotopy type theory
 - Preliminaries
- 2 Construction of Down(C) $\rightarrow C$
 - Category of chains and skew ladders
 - Category of chains and free-sliding ladders
 - Localization
- Thank you!
 - Bibliography
- Omitted slides (proof of localization)
 - (weak) 1-localization
 - $(\infty, 1)$ -localization

Homotopy type theory

Homotopy type theory (HoTT)

Homotopy-invariant formal theory of homotopical spaces, expressed in terms of *dependent type theory*.

type theory	homotopy theory
a type A : ${\cal U}$	a space A
a term a : A	a point $a \in A$
a dependent type $x:A \vdash B(x):\mathcal{U}$	a fibration $B o A$
the identity type $x, y : A \vdash x =_A y : \mathcal{U}$	the path space

Caveat: higher homotopies are luxuries: higher the homotopy, more complex the *syntax*.

Future application: finite Reedy presheaves

HARD: developping theory of space-valued presheaves

C: infinite or non-direct

- \implies the nerve N(C): infinite
- ⇒ infinitely various diagrams to commute
- ⇒ infinitely long syntax in definition!
 - Established special-case theories of space-valued presheaves (surveyed by Kraus and Sattler [4]):
 - over a finite direct category, as Reedy fibrant strict presheaves, by Shulman [6]
 - over the category freely generated by a quiver, etc.
 - If *C* is finite Reedy:
 - C-presheaf := Down(C)-presheaf inverting some arrows.
 - \rightsquigarrow a definition of *finitely truncated simplicial spaces*!

Preceding work to future application

- Kraus and Sattler, in their unfinished extended abstract [4], proposed several definitions of space-valued presheaves, and claimed their equivalence¹ with proof incomplete:
 - Over a finite direct category, as weak (i.e, fully coherent $(\infty, 1)$ -)functor (the number of coherence diagrams is finite).
 - General weak presheaves by resorting to infinitary logic or two-level type theory.
 - Over a finite Reedy category satisfying a certain condition, along the same line as the speaker.
- For the last item, they constructed their version of "direct replacement" D(C).

¹as long as any two of them are defined

On Kraus-Sattler's D(C) [4]

- If C is Reedy and has natural number-valued degree function, then D(C) is direct.
- If C is finite Reedy, then D(C) is finite direct.
- The construction of D(C) is much simpler than Down(C).
- Kraus-Sattler [4] claims:
 - the theory of C-presheaves via D(C) works if $D(C) \rightarrow C$ is a Grothendieck opfibration;
 - $D(C) \to C$ is an optibration for $C = \Delta$ or $C = \Delta_{\leq n}$.
- In private communication, Kraus and the speaker confirmed:
 - $D(\Delta) \rightarrow \Delta$ is an optibration;
 - $D(\Delta_{\leq n}) \to \Delta_{\leq n}$, for $0 < n < \infty$, is NOT an optibration;
 - if $D(C) \to C$ is an optibration, it is $(\infty, 1)$ -localizing;
 - ullet the proof of the last claim does not apply to $D(oldsymbol{\Delta}_{\leq n}) o oldsymbol{\Delta}_{\leq n}.$

Introduction: Preliminaries

- Introduction
 - Result
 - Motivation: Homotopy type theory
 - Preliminaries
- 2 Construction of Down(C) \rightarrow C
 - Category of chains and skew ladders
 - Category of chains and free-sliding ladders
 - Localization
- Thank you!
 - Bibliography
- Omitted slides (proof of localization)
 - (weak) 1-localization
 - $(\infty, 1)$ -localization

Directness and Reedy structure

- A binary relation < on X is well-founded if Y = X is the unique $Y \subseteq X$ with $\forall x \in X$, $(\{y \mid y < x\} \subseteq Y \implies x \in Y)$.
- A category C is *direct* if the existence of non-identity $x \to y$ is a well-founded relation on Ob(C).
- A Reedy structure on a category C is a pair (C_-, C_+) where:
 - $C_-, C_+ \subseteq C$ wide subcategories;
 - For $x \to y$, $\exists !$ factorization $x \xrightarrow{-} z \xrightarrow{+} y$;
 - the following < on Ob(C) is well-founded: x < y if either:
 - $\exists x \stackrel{-}{\leftarrow} y$ non-identity, or
 - $\exists x \stackrel{+}{\rightarrowtail} y$ non-identity.

Simplex category

- The simplex category Δ: Reedy
 - Ob: $[n] := \{0 < 1 < \cdots < n\}, n \ge 0$
 - Mor: $[m] \rightarrow [n] \leq$ -preserving map
 - $\Delta_- := \{\text{surjectives}\}, \text{ "degeneracies"}$
 - $\Delta_+ := \{\text{injectives}\}, \text{ "face maps"}$

Localization

• A functor $F: C \to D$ is (weakly) 1-localizing at $W \subseteq Mor C$ if, for every category E:

$$\operatorname{\mathsf{Fun}}(D,E) \xrightarrow{F^*} \operatorname{\mathsf{Fun}}(C,E)$$

$$\operatorname{\mathsf{cat. equiv.}} \{C \to E \text{ inverting } W\}$$

• An $(\infty, 1)$ -localizing simplicial map: defined similarly (for every quasi-category Q, \ldots)

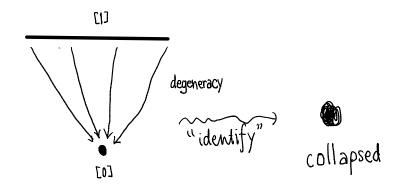
Construction of $Down(C) \rightarrow C$

- Introduction
 - Result
 - Motivation: Homotopy type theory
 - Preliminaries
- 2 Construction of Down(C) $\rightarrow C$
 - Category of chains and skew ladders
 - Category of chains and free-sliding ladders
 - Localization
- Thank you!
 - Bibliography
- Omitted slides (proof of localization)
 - (weak) 1-localization
 - $(\infty, 1)$ -localization

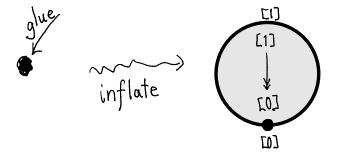
Construction: Category of chains and skew ladders

- Introduction
 - Result
 - Motivation: Homotopy type theory
 - Preliminaries
- 2 Construction of Down $(C) \rightarrow C$
 - Category of chains and skew ladders
 - Category of chains and free-sliding ladders
 - Localization
- Thank you!
 - Bibliography
- Omitted slides (proof of localization)
 - (weak) 1-localization
 - $(\infty, 1)$ -localization

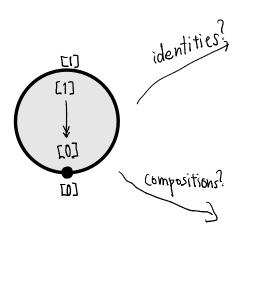
Geometric intuition: identification

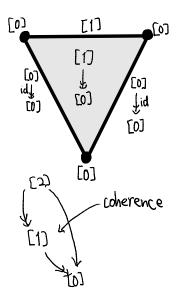


Geometric intuition: glue



Geometric intuition: be categorically sane





Category of chains and skew ladders

Definition

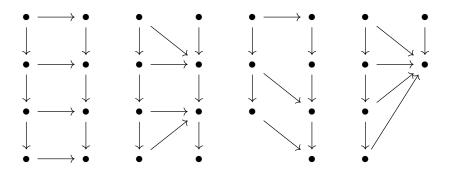
Let C be a category. The category $\int \mathbf{N}(C)$ consists of:

- objects: pairs ([n], X), where:
 - $[n] \in \mathsf{Ob} \, \Delta$;
 - $X: [n] \rightarrow C$ is a functor.
- morphism (α, θ) : $([m], X) \rightarrow ([n], Y)$ consists of:
 - $\alpha : [m] \rightarrow [n]$ in Δ ;
 - $\theta: X \Rightarrow Y \circ \alpha$ a natural transformation.
- If (α, θ) : $([I], X) \rightarrow ([m], Y)$ and (β, ϕ) : $([m], Y) \rightarrow ([n], Z)$, then the composite is $(\beta \circ \alpha, \xi)$ where:

$$\xi_i = \phi_{\alpha(i)} \circ \theta_i$$
.

remarks on $\int \mathbf{N}(C)$

- The symbol ∫ indicates the Grothendieck construction.
 Lumsdaine told me that the Grothendieck construction is usable here in his MathOverflow answer [3] to me.
- Example of morphisms in $\int \mathbf{N}(C)$:



Subcategories of $\int \mathbf{N}(C)$

Let C be Reedy hereafter.

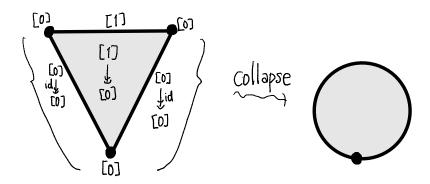
Definition

- The subcategory $\int \mathbf{N}^{-,+}(C) \subseteq \int \mathbf{N}(C)$ consists of:
 - objects ([n], X) where X factors through C_- ;
 - morphisms (α, θ) where θ consists of morphisms in C_+ .
- The full subcategory $\int \mathbf{N}_{+}^{--,+}(C) \subseteq \int \mathbf{N}^{-,+}(C)$ is spanned by ([n], X) where X reflects identities.
- The categories are due to author, but the notations (with \int) are completely due to Lumsdaine [3].
- $\int \mathbf{N}^{-,+}(C) \to C$ is localizing, but the category is not direct nor finite.
- $\int \mathbf{N}_{+}^{--,+}(C) \to C$ is NOT localizing, but the category is direct and preserves the finiteness of C.

Construction: Category of free-sliding ladders

- Introduction
 - Result
 - Motivation: Homotopy type theory
 - Preliminaries
- 2 Construction of Down(C) $\rightarrow C$
 - Category of chains and skew ladders
 - Category of chains and free-sliding ladders
 - Localization
- Thank you!
 - Bibliography
- Omitted slides (proof of localization)
 - (weak) 1-localization
 - $(\infty, 1)$ -localization

Geometric intuition: collapse unneeded cells



Equivalence relation on morphisms I

Definition (Order of the morphisms)

Let $(\alpha, \theta), (\beta, \phi)$: $([m], X) \to ([n], Y)$ be morphisms in $\int \mathbf{N}(C)$. We say that $(\alpha, \theta) \leq (\beta, \phi)$ if, for each i = 0, ..., m, we have $\alpha(i) \leq \beta(i)$ and the following commutative diagram:

$$X(i) \xrightarrow{\theta_i} Y(\alpha(i))$$

$$\downarrow \qquad \qquad \downarrow$$

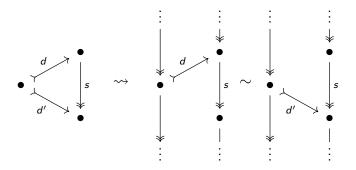
$$Y(\beta(i))$$

Definition (Equivalence relation of morphisms)

Let $\alpha, \beta \colon ([m], X) \to ([n], Y)$ be morphisms in $\int \mathbf{N}^{-,+}(C)$. The equivalence relation \sim is given by: $\alpha \sim \beta$ iff there exists a common upper bound $([m], X) \to ([n], Y)$ in $\int \mathbf{N}^{-,+}(C)$.

Equivalence relation on morphisms II

The equivalence relation \sim on each hom-set of $\int \mathbf{N}^{-,+}(C)$ is generated by:



Definition of Down(C)

Definition (Down(C))

The category $\mathsf{Down}_*(C)$ has the same objects as $\int \mathbf{N}^{-,+}(C)$, and its morphisms are equivalence classes of morphisms in $\int \mathbf{N}^{-,+}(C)$. Similarly, $\mathsf{Down}(C)$ has the same objects as $\int \mathbf{N}_+^{--,+}(C)$, and its morphisms are equivalence classes of its morphisms.

$$\int \mathbf{N}_{+}^{--,+}(C) \xrightarrow{\text{full}} \int \mathbf{N}^{-,+}(C)$$

$$\downarrow^{\text{quotient}} \qquad \qquad \downarrow^{\text{quotient}}$$

$$\text{Down}(C) \xrightarrow{\sim} \text{Down}_{*}(C)$$

Down(C) is direct and preserves the finiteness of C.

last vertex functor

Definition (last)

Let $\Gamma \in \{ \int \mathbf{N}(C), \int \mathbf{N}^{-,+}(C), \int \mathbf{N}^{--,+}(C), \mathsf{Down}_*(C), \mathsf{Down}(C) \}.$

- The functor $last: \Gamma \to C$ is given by last([n], X) = X(n).
- $f \in \mathsf{Mor}\,\Gamma$ is a last-weak equivalence if $\mathsf{last}(f) = \mathrm{id}$.

This functor is $(\infty, 1)$ -localizing but for the case $\int \mathbf{N}_{+}^{--,+}(C) \to C$.

$$\begin{array}{ccc}
X(0) & & \downarrow & \\
& \downarrow & & \stackrel{\text{last}}{\longmapsto} & X(n) \\
\downarrow & & & \\
X(n) & & & & \\
\end{array}$$

Localization

- Introduction
 - Result
 - Motivation: Homotopy type theory
 - Preliminaries
- 2 Construction of Down $(C) \rightarrow C$
 - Category of chains and skew ladders
 - Category of chains and free-sliding ladders
 - Localization
- Thank you
 - Bibliography
- Omitted slides (proof of localization)
 - (weak) 1-localization
 - $(\infty, 1)$ -localization

Localization

Theorem

If $\Gamma \in \{ \int \mathbf{N}(C), \int \mathbf{N}^{-,+}(C), \mathsf{Down}_*(C), \mathsf{Down}(C) \}$, then the functor last: $\Gamma \to C$ is $(\infty, 1)$ -localizing at the last-weak equivalences.

Given $\Gamma \to Q$ inverting last-weak equivalences, we need $C \to Q$.

Slogan

Do it primitively!

Example

$$x \stackrel{s}{\rightarrow} z \stackrel{d}{\rightarrowtail} y$$
 in C should be mapped to:

$$x \xrightarrow{\mathrm{id}} x$$
 $\downarrow s$
 $y \xleftarrow{\mathrm{id}} y \xrightarrow{d} z$
in Γ .

Thank you: Bibliography

- Introduction
 - Result
 - Motivation: Homotopy type theory
 - Preliminaries
- 2 Construction of Down(C) $\rightarrow C$
 - Category of chains and skew ladders
 - Category of chains and free-sliding ladders
 - Localization
- Thank you!
 - Bibliography
- Omitted slides (proof of localization)
 - (weak) 1-localization
 - $(\infty, 1)$ -localization

References I

- [1] C. Barwick and D. M. Kan. A Thomason-like Quillen equivalence between quasi-categories and relative categories. 2011. arXiv: 1101.0772 [math.AT]. URL: https://arxiv.org/abs/1101.0772.
- [2] C. Barwick and D. M. Kan. Relative categories: Another model for the homotopy theory of homotopy theories. 2011. arXiv: 1011.1691 [math.AT]. URL: https://arxiv.org/abs/1011.1691.
- [3] Peter LeFanu Lumsdaine. What is the name for the construction of this poset related to coherence of degeneracies of the simplex category? MathOverflow answer. June 4, 2022. URL: https://mathoverflow.net/q/423963 (visited on 02/06/2025).

References II

- [4] Nicolai Kraus and Christian Sattler. Space-Valued Diagrams, Type-Theoretically (Extended Abstract). 2017. arXiv: 1704.04543 [math.LO]. URL: https://arxiv.org/abs/1704.04543.
- [5] Jacob Lurie. Kerodon. 2024. URL: https://kerodon.net.
- [6] Michael Shulman. "Univalence for inverse diagrams and homotopy canonicity". In: Mathematical Structures in Computer Science 25.5 (Nov. 2014), pp. 1203–1277. ISSN: 1469-8072. DOI: 10.1017/s0960129514000565.

Localization

- Introduction
 - Result
 - Motivation: Homotopy type theory
 - Preliminaries
- 2 Construction of Down(C) $\rightarrow C$
 - Category of chains and skew ladders
 - Category of chains and free-sliding ladders
 - Localization
- Thank you
 - Bibliography
- Omitted slides (proof of localization)
 - (weak) 1-localization
 - $(\infty, 1)$ -localization

Localization: (weak) 1-localization

- Introduction
 - Result
 - Motivation: Homotopy type theory
 - Preliminaries
- 2 Construction of Down(C) $\rightarrow C$
 - Category of chains and skew ladders
 - Category of chains and free-sliding ladders
 - Localization
- Thank you
 - Bibliography
- Omitted slides (proof of localization)
 - (weak) 1-localization
 - $(\infty, 1)$ -localization

(Weak) 1-localization

The goal is to sketch:

Theorem

If Γ is one of the four categories $\int \mathbf{N}(C)$, $\int \mathbf{N}^{-,+}(C)$, $\mathsf{Down}_*(C)$, and $\mathsf{Down}(C)$, then the functor $\mathsf{last} \colon \Gamma \to C$ is weakly 1-localizing at the last -weak equivalences.

 $\Gamma = \int \mathbf{N}(C)$ is easy and is of little interest. Let Γ be any of the other three.

- last sends last-weak equivalences to isomorphisms: trivial.
- $last^*: D^C \to D^\Gamma$ is fully faithful: easy. If $\epsilon: F \circ last \Rightarrow G \circ last$, then its unique inverse image is $\tilde{\epsilon}_x := \epsilon_{([0],x)}$.
- Factorization through last: hard.

Factorization through last I: factor functor

Let $F \colon \Gamma \to D$ be a functor that sends last-weak equivalences to isomorphisms. We wish to construct a functor $G \colon C \to D$ and a natural isomorphism $\xi \colon G \circ \mathfrak{last} \Rightarrow F$.

- For each $x \in Ob(C)$, set G(x) = F([0], x).
- Let the following be the Reedy factorization of any morphism in
 C:

$$x \xrightarrow{s} y \xrightarrow{d} z$$

We wish to set $G(d \circ s)$ as the composition of:

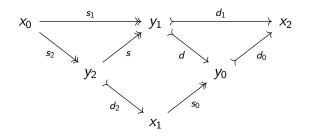
$$F([0],x) \xrightarrow{F(\delta_1,\mathrm{id}_x)} F([1],s) \xleftarrow{F(\delta_0,\mathrm{id}_y)} F([0],y) \xrightarrow{F(\mathrm{id}_{[0]},d)} F([0],z).$$

More pictorially:

$$\begin{array}{c} x \mathrel{\raisebox{.3cm}{$\stackrel{\mathrm{id}}{\rightarrowtail}$}} x \\ & \stackrel{\hspace{-.2cm}{\downarrow}^s}{y} \mathrel{\longleftarrow}^{\mathrm{id}} \checkmark y \mathrel{\rightarrowtail}^{d} z \end{array}$$

Factorization through last II: functorallity I

• Let the following be the Reedy factorization of any commutative triangle $x_0 \rightarrow x_1 \rightarrow x_2$ in C:

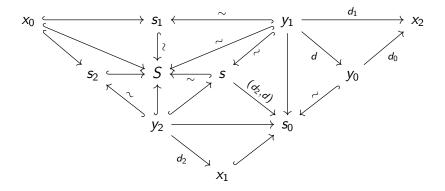


Write *S* for the functor [2] \rightarrow *C*₋ given by:

$$x_0 \xrightarrow{s_2} y_2 \xrightarrow{s} y_1.$$

Then the functoriality of G is shown by the commutative diagram in Γ in the next slide:

Factorization through last III: functoriality II



(the length symbol from Δ is omitted for simplicity.)

Factorization through last IV: natural isomorphism

It remains to construct a natural isomorphism $\xi \colon G \circ \mathfrak{last} \Rightarrow F$.

• Consider ([n], X) in Ob Γ . We have to construct:

$$\xi_{([n],X)} \colon G(X(n)) = F([0],X(n)) \to F([n],X).$$

• We set $\iota_n \colon [0] \to [n]; 0 \mapsto n$. Then we put:

$$\xi_{([n],X)} = F(\iota_n, \mathrm{id}_{X(n)}).$$

Factorization through last V: naturality

• Naturality. Let (α, θ) : $([m], X) \rightarrow ([n], Y)$ be a morphism in Γ . Consider:

$$\begin{array}{ccc}
X(m) & \xrightarrow{s} & z \\
\theta_{m} & & \downarrow^{d} \\
Y(\alpha(m)) & \longrightarrow & Y(n)
\end{array}$$

Then the naturality square is obtained from:



Localization: $(\infty, 1)$ -localization

- Introduction
 - Result
 - Motivation: Homotopy type theory
 - Preliminaries
- 2 Construction of Down(C) \rightarrow C
 - Category of chains and skew ladders
 - Category of chains and free-sliding ladders
 - Localization
- Thank you!
 - Bibliography
- Omitted slides (proof of localization)
 - (weak) 1-localization
 - $(\infty, 1)$ -localization

Wild idea

Theorem

The functor $last: \Gamma \to C$ is $(\infty,1)$ -localizing at the last-weak equivalences for the same set of $\Gamma: \int \mathbf{N}(C)$, $\int \mathbf{N}^{-,+}(C)$, $Down_*(C)$, and Down(C).

Slogan

Primitively generalize the proof of 1-localization to higher simplices.

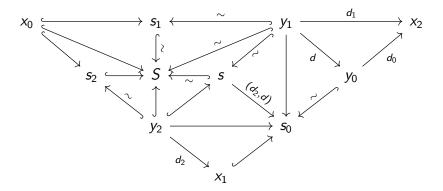
We have used many diagrams in the proof of 1-localization.

diagrams used for constructing factor functor

• 1-simplex:

$$([0],x) \stackrel{(\delta_1,\operatorname{id}_x)}{\longrightarrow} ([1],s) \stackrel{(\delta_0,\operatorname{id}_y)}{\longleftarrow} ([0],y) \stackrel{(\operatorname{id}_{[0]},d)}{\longrightarrow} ([0],z).$$

• 2-simplex:

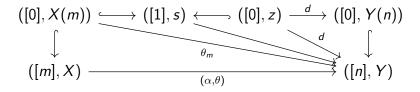


diagrams used for constructing natural isom

• 0-simplex:

$$(\iota_n, \mathrm{id}_{X(n)}) \colon ([0], X(n)) \to ([n], X).$$

• 1-simplex:



Winding up to a simplicial map

- These diagrams glues together to form a simplicial map:
 - For functor: $Dcp(N(C)) \rightarrow N(\Gamma)$;
 - For natural isomorphism: $Dcpl(N(\Gamma)) \rightarrow N(\Gamma)$.

For some colimit-preserving endofunctors Dcp and Dcpl on \mathbf{Set}_{Δ} .

- If $\operatorname{Dcp} X$ has a localization that has X as a simplicial subset, we can leverage $\operatorname{Dcp}(N(C)) \to N(\Gamma)$ to $N(C) \to N(\Gamma)$ under a condition.
- Likewise, if Dcpl X has a localization that has $X \times \Delta[1]$ as a simplicial subset, we can leverage $Dcpl(N(\Gamma)) \to N(\Gamma)$ to $N(\Gamma) \times \Delta[1] \to N(\Gamma)$ under a condition.