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Main theorem

Theorem (Main result)
Let C be a Reedy category. We construct:

a direct category Down(C );

an (↑, 1)-localizing 1-functor Down(C ) → C .

If C is finite, so is Down(C ).

This talk is based on arXiv:2502.05096.
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Preceding result

A seemingly stronger result by Lurie:

Theorem (Lurie [5])
Let X be a simplicial set. Then there are:

a well-founded partially ordered set P ;

an (↑, 1)-localizing simplicial map N(P) → X .

If X is finite, then finite P exists.

Remark
Lurie did not state well-foundedness, which follows from construction.

An older highly relevant result by Barwick and Kan [2, 1]:
a model structure on relative categories whose cofibrant objects

are relative posets, giving a model of (↑, 1)-categories.
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Comparison

Theorem (Main result)
Let C be a Reedy category. We construct:

a direct category Down(C );

an (↑, 1)-localizing 1-functor Down(C ) → C .

If C is finite, so is Down(C ).

Theorem (Lurie [5])
Let X be a simplicial set. Then there are:

a well-founded partially ordered set P ;

an (↑, 1)-localizing simplicial map N(P) → X .

If X is finite, then finite P exists.

The nerve N(C ) is finite ↓↔ C is finite direct.
Genki Sato Reedy cats as localizations of direct cats CSCAT 2025 7 / 49



Introduction: Motivation

1 Introduction
Result
Motivation: Homotopy type theory
Preliminaries

2 Construction of Down(C ) → C
Category of chains and skew ladders
Category of chains and free-sliding ladders
Localization

3 Thank you!
Bibliography

4 Omitted slides (proof of localization)
(weak) 1-localization
(↑, 1)-localization

Genki Sato Reedy cats as localizations of direct cats CSCAT 2025 8 / 49



Homotopy type theory

Homotopy type theory (HoTT)
Homotopy-invariant formal theory of homotopical spaces, expressed
in terms of dependent type theory.

type theory homotopy theory
a type A : U a space A
a term a : A a point a ↗ A

a dependent type x : A ↘ B(x) : U a fibration B → A
the identity type x , y : A ↘ x =A y : U the path space

Caveat: higher homotopies are luxuries: higher the homotopy, more
complex the syntax.
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Future application: finite Reedy presheaves

HARD: developping theory of space-valued presheaves
C : infinite or non-direct
=↔ the nerve N(C ): infinite
=↔ infinitely various diagrams to commute
=↔ infinitely long syntax in definition!

Established special-case theories of space-valued presheaves
(surveyed by Kraus and Sattler [4]):

over a finite direct category, as Reedy fibrant strict presheaves,

by Shulman [6]

over the category freely generated by a quiver, etc.

If C is finite Reedy:
C -presheaf := Down(C )-presheaf inverting some arrows.

↭ a definition of finitely truncated simplicial spaces!
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Preceding work to future application

Kraus and Sattler, in their unfinished extended abstract [4],
proposed several definitions of space-valued presheaves, and
claimed their equivalence1 with proof incomplete:

Over a finite direct category, as weak (i.e, fully coherent

(↑, 1)-)functor (the number of coherence diagrams is finite).

General weak presheaves by resorting to infinitary logic or

two-level type theory.

Over a finite Reedy category satisfying a certain condition,

along the same line as the speaker.

For the last item, they constructed their version of “direct
replacement” D(C ).

1
as long as any two of them are defined
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On Kraus-Sattler’s D(C ) [4]

If C is Reedy and has natural number-valued degree function,
then D(C ) is direct.

If C is finite Reedy, then D(C ) is finite direct.

The construction of D(C ) is much simpler than Down(C ).

Kraus-Sattler [4] claims:
the theory of C -presheaves via D(C ) works if D(C ) → C is a

Grothendieck opfibration;

D(C ) → C is an opfibration for C = ! or C = !→n.

In private communication, Kraus and the speaker confirmed:
D(!) → ! is an opfibration;

D(!→n) → !→n, for 0 < n < ↑, is NOT an opfibration;

if D(C ) → C is an opfibration, it is (↑, 1)-localizing;
the proof of the last claim does not apply to D(!→n) → !→n.
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Directness and Reedy structure

A binary relation < on X is well-founded if Y = X is the unique
Y ≃ X with ⇐x ↗ X , ({y | y < x} ≃ Y =↔ x ↗ Y ).

A category C is direct if the existence of non-identity x → y is a
well-founded relation on Ob(C ).

A Reedy structure on a category C is a pair (C↑,C+) where:
C↑,C+ ≃ C wide subcategories;

For x → y , ⇒! factorization x
↑↫ z

+↬ y ;
the following < on Ob(C ) is well-founded: x < y if either:

⇒ x
→⊜ y non-identity, or

⇒ x
+↬ y non-identity.
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Simplex category

The simplex category !: Reedy
Ob: [n] := {0 < 1 < · · · < n}, n ⇑ 0

Mor: [m] → [n] ⇓-preserving map

!↑ := {surjectives}, “degeneracies”
!+ := {injectives}, “face maps”
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Localization

A functor F : C → D is (weakly) 1-localizing at W ≃ MorC if,
for every category E :

Fun(D,E ) Fun(C ,E )

{C → E inverting W }

F→

↓
cat. equiv.

An (↑, 1)-localizing simplicial map: defined similarly (for every
quasi-category Q, . . . )
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Geometric intuition: identification
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Geometric intuition: glue
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Geometric intuition: be categorically sane
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Category of chains and skew ladders

Definition
Let C be a category. The category

∫
N(C ) consists of:

objects: pairs ([n],X ), where:
[n] ↗ Ob!;

X : [n] → C is a functor.

morphism (ω, ε) : ([m],X ) → ([n],Y ) consists of:
ω : [m] → [n] in !;

ε : X ↔ Y ⇔ ω a natural transformation.

If (ω, ε) : ([l ],X ) → ([m],Y ) and (ϑ,ϖ) : ([m],Y ) → ([n],Z ),
then the composite is (ϑ ⇔ ω, ϱ) where:

ϱi = ϖω(i) ⇔ εi .
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remarks on
∫
N(C )

The symbol
∫
indicates the Grothendieck construction.

Lumsdaine told me that the Grothendieck construction is usable
here in his MathOverflow answer [3] to me.

Example of morphisms in
∫
N(C ):

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

•

• •

• •

•

•
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Subcategories of
∫
N(C )

Let C be Reedy hereafter.

Definition
The subcategory

∫
N↑,+(C ) ≃

∫
N(C ) consists of:

objects ([n],X ) where X factors through C↑;
morphisms (ω, ε) where ε consists of morphisms in C+.

The full subcategory
∫
N

↑↑,+
+ (C ) ≃

∫
N↑,+(C ) is spanned by

([n],X ) where X reflects identities.

The categories are due to author, but the notations (with
∫
) are

completely due to Lumsdaine [3].∫
N↑,+(C ) → C is localizing, but the category is not direct nor

finite.∫
N

↑↑,+
+ (C ) → C is NOT localizing, but the category is direct

and preserves the finiteness of C .
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Geometric intuition: collapse unneeded cells
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Equivalence relation on morphisms I

Definition (Order of the morphisms)

Let (ω, ε), (ϑ,ϖ) : ([m],X ) → ([n],Y ) be morphisms in
∫
N(C ). We

say that (ω, ε) ⇓ (ϑ,ϖ) if, for each i = 0, . . . ,m, we have
ω(i) ⇓ ϑ(i) and the following commutative diagram:

X (i) Y (ω(i))

Y (ϑ(i))

εi

ϑi

Definition (Equivalence relation of morphisms)

Let ω,ε : ([m],X ) → ([n],Y ) be morphisms in
∫
N↑,+(C ). The

equivalence relation ↖ is given by: ω ↖ ε i! there exists a common
upper bound ([m],X ) → ([n],Y ) in

∫
N↑,+(C ).
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Equivalence relation on morphisms II

The equivalence relation ↖ on each hom-set of
∫
N↑,+(C ) is

generated by:

•

•

•

s

d

d ↑

↭

...
...

•

•

•
...

...

s

d

↖

...
...

•

•

•
...

...

s

d ↑
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Definition of Down(C )

Definition (Down(C ))

The category Down↔(C ) has the same objects as
∫
N↑,+(C ), and its

morphisms are equivalence classes of morphisms in
∫
N↑,+(C ).

Similarly, Down(C ) has the same objects as
∫
N

↑↑,+
+ (C ), and its

morphisms are equivalence classes of its morphisms.

∫
N

↑↑,+
+ (C )

∫
N↑,+(C )

Down(C ) Down↔(C )

full

quotient quotient

cat eq.
↗

Down(C ) is direct and preserves the finiteness of C .
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last vertex functor

Definition (last)

Let ” ↗
{∫

N(C ),
∫
N↑,+(C ),

∫
N

↑↑,+
+ (C ),Down↔(C ),Down(C )

}
.

The functor last : ” → C is given by last([n],X ) = X (n).

f ↗ Mor ” is a last-weak equivalence if last(f ) = id.

This functor is (↑, 1)-localizing but for the case
∫
N

↑↑,+
+ (C ) → C .

X (0)

...

X (n)

last↙∝→ X (n)
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Localization

Theorem
If ” ↗

{∫
N(C ),

∫
N↑,+(C ),Down↔(C ),Down(C )

}
, then the functor

last : ” → C is (↑, 1)-localizing at the last-weak equivalences.

Given ” → Q inverting last-weak equivalences, we need C → Q.

Slogan
Do it primitively!

Example

x
s↫ z

d↬ y in C should be mapped to:

x x

y y z

id

s
id d

in ”.
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(Weak) 1-localization

The goal is to sketch:

Theorem
If ” is one of the four categories

∫
N(C ),

∫
N↑,+(C ), Down↔(C ), and

Down(C ), then the functor last : ” → C is weakly 1-localizing at the
last-weak equivalences.

” =
∫
N(C ) is easy and is of little interest. Let ” be any of the other

three.

last sends last-weak equivalences to isomorphisms: trivial.

last↔ : DC → D! is fully faithful: easy. If ς : F ⇔ last ↔ G ⇔ last,
then its unique inverse image is ς̃x := ς([0],x).

Factorization through last: hard.
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Factorization through last I: factor functor

Let F : ” → D be a functor that sends last-weak equivalences to
isomorphisms. We wish to construct a functor G : C → D and a
natural isomorphism ϱ : G ⇔ last ↔ F .

For each x ↗ Ob(C ), set G (x) = F ([0], x).
Let the following be the Reedy factorization of any morphism in
C :

x y zs d

We wish to set G (d ⇔ s) as the composition of:

F ([0], x) F ([1], s) F ([0], y) F ([0], z).
F (ϖ1,idx ) F (ϖ0,idy )

↗
F (id[0],d)

More pictorially:

x x

y y z

id

s
id d
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Factorization through last II: functoraility I

Let the following be the Reedy factorization of any commutative
triangle x0 → x1 → x2 in C :

x0 y1 x2

y2 y0

x1

s1

s2

d1

d

d2

s d0

s0

Write S for the functor [2] → C↑ given by:

x0 y2 y1.
s2 s

Then the functoriality of G is shown by the commutative
diagram in ” in the next slide:
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Factorization through last III: functoriality II

x0 s1 y1 x2

s2 S s y0

y2 s0

x1

↗

↗

↗
↗

d

d1

↗ (d
2 ,d)

d0

↗↗

d2

(the length symbol from ! is omitted for simplicity.)
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Factorization through last IV: natural isomorphism

It remains to construct a natural isomorphism ϱ : G ⇔ last ↔ F .

Consider ([n],X ) in Ob ”. We have to construct:

ϱ([n],X ) : G (X (n)) = F ([0],X (n)) → F ([n],X ).

We set φn : [0] → [n]; 0 ↙→ n. Then we put:

ϱ([n],X ) = F (φn, idX (n)).
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Factorization through last V: naturality

Naturality. Let (ω, ε) : ([m],X ) → ([n],Y ) be a morphism in ”.
Consider:

X (m) z

Y (ω(m)) Y (n)

s

εm d

Then the naturality square is obtained from:

([0],X (m)) ([1], s) ([0], z) ([0],Y (n))

([m],X ) ([n],Y )
εm

d

d

(ω,ε)
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Wild idea

Theorem
The functor last : ” → C is (↑, 1)-localizing at the last-weak
equivalences for the same set of ”:

∫
N(C ),

∫
N↑,+(C ), Down↔(C ),

and Down(C ).

Slogan
Primitively generalize the proof of 1-localization to higher simplices.

We have used many diagrams in the proof of 1-localization.
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diagrams used for constructing factor functor

1-simplex:

([0], x) ([1], s) ([0], y) ([0], z).
(ϖ1,idx ) (ϖ0,idy )

↗
(id[0],d)

2-simplex:

x0 s1 y1 x2

s2 S s y0

y2 s0

x1

↗

↗

↗
↗

d

d1

↗ (d
2 ,d)

d0

↗↗

d2
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diagrams used for constructing natural isom

0-simplex:
(φn, idX (n)) : ([0],X (n)) → ([n],X ).

1-simplex:

([0],X (m)) ([1], s) ([0], z) ([0],Y (n))

([m],X ) ([n],Y )
εm

d

d

(ω,ε)
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Winding up to a simplicial map

These diagrams glues together to form a simplicial map:
For functor: Dcp(N(C )) → N(!);

For natural isomorphism: DcpI(N(!)) → N(!).

For some colimit-preserving endofunctors Dcp and DcpI on
Set!.

If DcpX has a localization that has X as a simplicial subset, we
can leverage Dcp(N(C )) → N(”) to N(C ) → N(”) under a
condition.

Likewise, if DcpIX has a localization that has X ′#[1] as a
simplicial subset, we can leverage DcpI(N(”)) → N(”) to
N(”)′#[1] → N(”) under a condition.
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