深層学習アルゴリズムの 関手的構成の圏論的定式化

東北大学情報科学研究科 中村卓武

電気通信研究所 浅田和之,中野圭介

背景

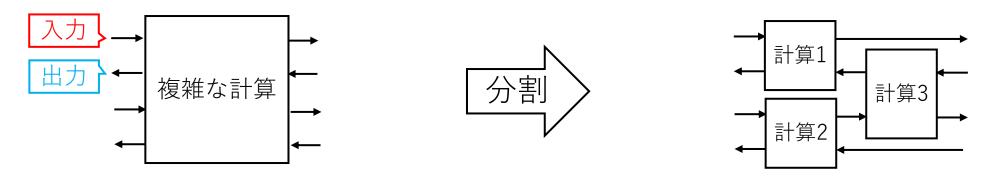
- 機械学習の学習手法は複雑で理論化が追い付いていない
 - 学習手法は既存手法の組み合わせによって提案されることも多い
 - 例:二つの独立したタスクとその学習手法を組み合わせる場合
 - 自然言語処理:単語をベクトルに変換+ニューラルネットワークで処理
 - 二つのタスクで推論を分担
 - 画像生成:画像を生成+画像が本物かを判定
 - 二つのタスクを(ゲーム理論的に)競わせる

目的と手法

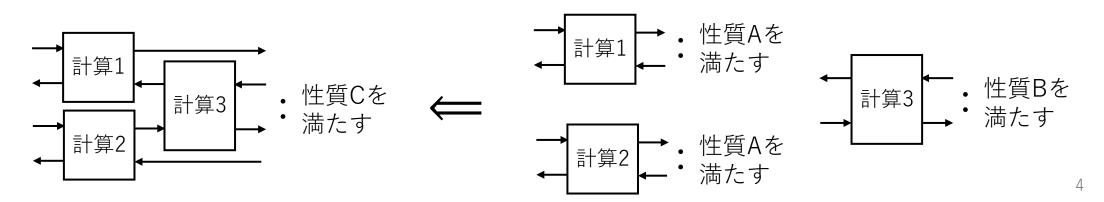
- •目的:学習手法の**計算をモジュール化**
 - →新規手法の**構成**がより簡単に
 - 計算の性質をモジュールに帰着 ⇒組み合わさった手法の**性質**を既存手法に帰着
- 方針: 既存手法やその組合せの圏論的定式化
 - 対象とする学習手法:勾配に基づく学習(深層学習)

計算のモジュール化と性質の帰着

• 計算のモジュール化

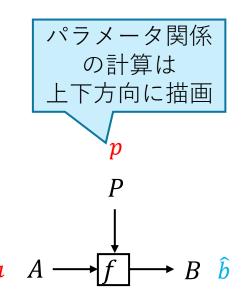


• **計算の性質**のモジュールへの帰着



(勾配に基づく) 学習アルゴリズム

- 学習(訓練)に必要な要素と用途
 - 訓練データ:入力 $a \in A$, 正解 $b \in B$, $(A = \mathbb{R}^n, B = \mathbb{R}^m)$
 - アーキテクチャ:微分可能な実数値関数 $f: P \times A \rightarrow B$
 - $p \in P : \mathcal{N} \ni \mathcal{I} = \mathcal{I}$
 - パラメータpを用いて入力aから予測 $\hat{b} = f(p,a)$ を計算
 - 誤差関数 $: e: B \times B \to \mathbb{R} \ (B = \mathbb{R}^m)$
 - 予測 \hat{b} と正解bの間の誤差 $L \coloneqq e(\hat{b},b)$ を計算
 - 例:二乗和誤差 $e(\hat{b},b) \coloneqq \frac{1}{2} \sum_{i} (\hat{b}_{i} b_{i})^{2}$
 - ・訓練:誤差Lを減らすようなパラメータpの探索
- 訓練方法(勾配降下法): $p' \coloneqq p \nabla_{\!\!p} L$ と更新し探索
 - 勾配 $\nabla_p L \coloneqq \left(\frac{\partial L}{\partial p_1}, ..., \frac{\partial L}{\partial p_n}\right)$:誤差Lを減らすためのpの移動量



これらの計算を中心に

モジュール化したい

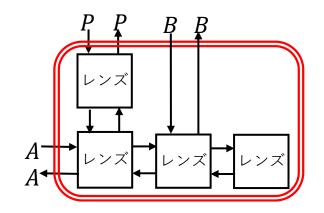
学習アルゴリズムの定式化

- 学習アルゴリズム

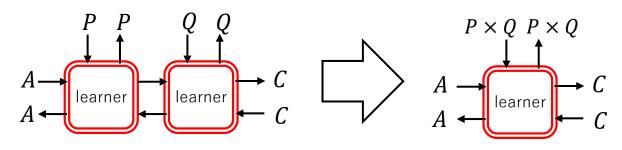
- 学習アルゴリズムの圏論的定式化の二つの研究
 - いずれも**レンズ**を基本的な代数構造として使用
 - 学習アルゴリズムへの解釈方法が異なる

レンズ:順方向の関数と 逆方向の関数の組

- Cruttwellらの構成 [Cruttwell+ '23]
 - 学習アルゴリズムを**モジュール化**



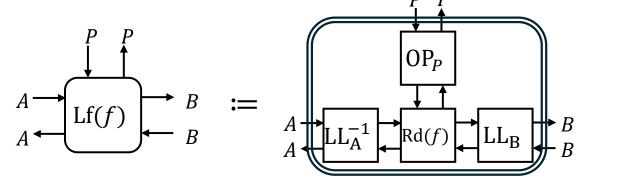
- Fongらの構成 [Fong+ '19]
 - learner:学習アルゴリズムの解釈を持つレンズ
 - learner同士の合成でlearnerが得られる



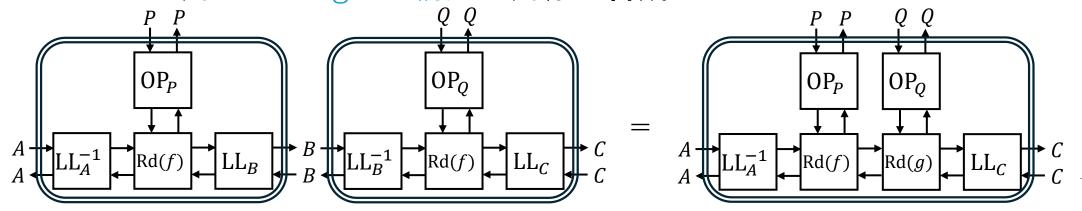
Cruttwellらの手法でFongらのlearnerをモジュール化する

学習アルゴリズムの新規構成法

- learnerの新規構成法を提案
 - learner構成をCruttwellらの構成のように**モジュール化**

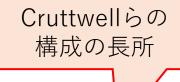


• learner同士をFongらの構成と同様に**合成**できる



新規構成法の応用

- 訓練データの正解がベクトルではなく 確率分布である場合がある
 - Fongらの構成では学習が困難
- モジュール化の応用
 - 正解が確率分布のタスクでの learner構成法を定義
 - learner構成の性質を モジュールの(別の)性質へ帰着
 - 関手性
 - GetPut則
 - well-defined性



Fongらの 構成の長所

正解が ベクトル	モジュール 化の種類	学習の構成	微分の 一般化	最適化手法 の一般化	関手性	GetPut 則
Cruttwell+	学習構成	0	0	0	N/A	N/A
Fong+	learner	0	×	×	0	0
新規	両方	0	0	0	0	0
正解が 確率分布	モジュール 化の種類	学習の構成	微分の 一般化	最適化手法 の一般化	関手性	GetPut 則
Cruttwell+	学習構成	0	0	0	N/A	N/A
Fong+	learner	\triangle	×	×	0	×
新規	両方	0	0	O	Δ	O

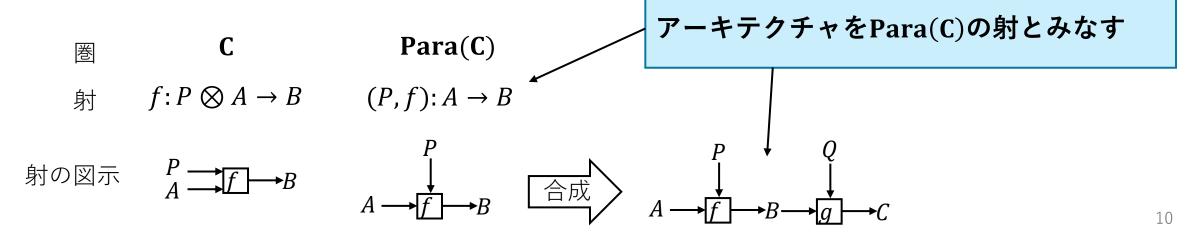
- 1. 既存研究
 - a. 圏論的な準備
 - b. Cruttwellらの構成の紹介
 - c. Fongらの構成の紹介
 - I. Fongらの構成の性質
- 2. 新規結果
- 3. 結果の応用

アーキテクチャの圏 [Gavranović '19, Gavranović '24]

- \boxtimes Smooth : Obj(Smooth) = { $\mathbb{R}^n | n \in \mathbb{N}$ }
 - Smooth(\mathbb{R}^n , \mathbb{R}^m): \mathbb{R}^n から \mathbb{R}^m への滑らかな関数の集合
 - 本発表では基本的にC = Smooth

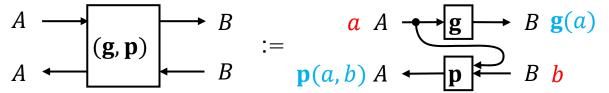
本研究の微分計算は Cartesian reversed differential category で一般化できる [Cockett+ '20]

- Para構成:SMC CからSMC Para(C)を構成
 - Obj(Para(C)) = Obj(C) Para(C)(A, B) = colim(C(ι (-) \otimes A, B))
 - 包含関手ι: **D** → **C** (**D**は部分圏)



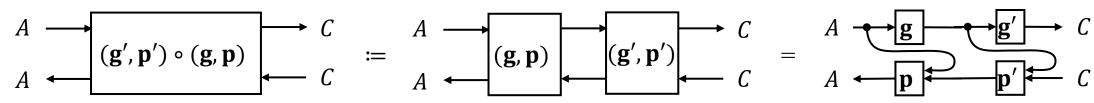
レンズの圏 [Foster+' 07]

- レンズの圏 Lens(C): Cはcartes get関数 Obj(Lens put関数 Obj(C) 射(g,p): $A \to B$: レンズ(Cの二つの射 $g: A \to B$, $p: A \times B \to A$ の組)
- - FongらとCruttwellらの構成で使用される基本的な代数構造
 - 次のように図示 [Boisseau+ '23]



使用される理由: 誤差逆伝播法と相性が良い

レンズの合成:

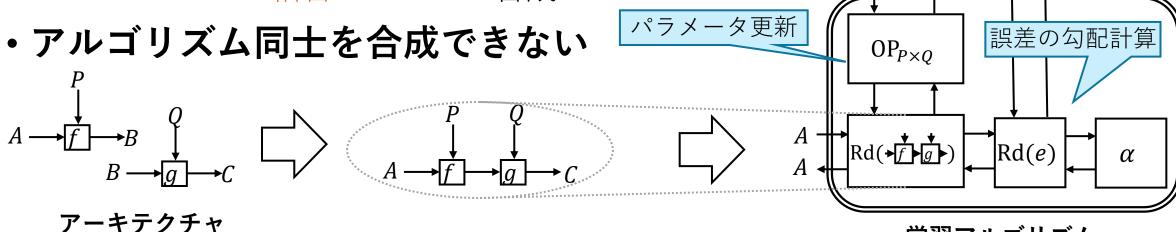


⇒ 順方向・逆方向の計算の合成を同時に表現できる

- 1. 既存研究
 - a. 圏論的な準備
 - b. Cruttwellらの構成の紹介
 - c. Fongらの構成の紹介
 - I. Fongらの構成の性質
- 2. 新規結果
- 3. 結果の応用

Cruttwellらの学習アルゴリズム構成法

- Cruttwellらの学習アルゴリズムの構成法
 - ・勾配に基づく学習で慣用されている構成の圏論的一般化
 - アーキテクチャを構成→学習アルゴリズム化
- ・モジュールによって学習アルゴリズムを構成
 - モジュール:レンズで表される機械学習アルゴリズムの各計算
 - モジュールの結合:レンズの合成



 $(P,f): A \rightarrow B, (Q,g): B \rightarrow C$

アーキテクチャ

学習アルゴリズム

 $Q \times P \quad Q \times P$

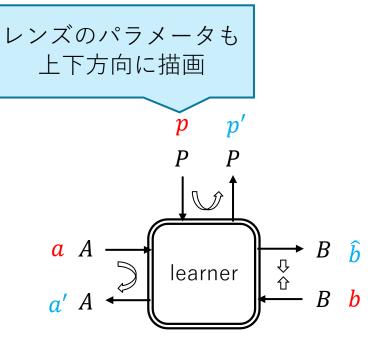
- 1. 既存研究
 - a. 圏論的な準備
 - b. Cruttwellらの構成の紹介
 - c. Fongらの構成の紹介
 - I. Fongらの構成の性質
- 2. 新規結果
- 3. 結果の応用

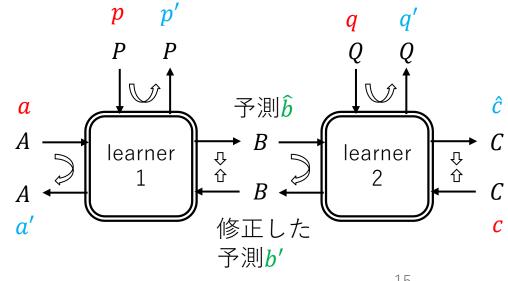
learner [Fong+ '19]

- learner: Para(Lens(C))の射 $(P, (g, p)): A \rightarrow B$
 - Fongらの構成における抽象化された学習アルゴリズム
 - $g: P \times A \rightarrow B$: パラメータpと入力aから予測 \hat{b} を計算
 - $\mathbf{p}: P \times A \times B \rightarrow P \times A$: 正解bを基にパラメータpと入力aを修正(更新)

入力aの修正はFongらの構成特有

- learnerの合成: Para(Lens(C))の合成
 - 訓練(put関数)では次の順序で計算する
 - 1. $learner1: \hat{c}をc$ に近づけるようにq, \hat{b} を修正
 - 2. $learner2: \hat{b}をb'に近づけるように<math>p$,aを修正

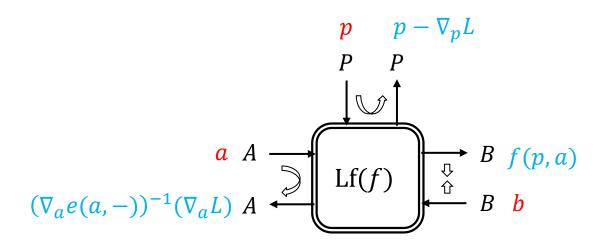




learner2の主張: \hat{b} ではなくb'を使えば \hat{c} がcに近づく

Fongらのlearner構成 [Fong+'19]

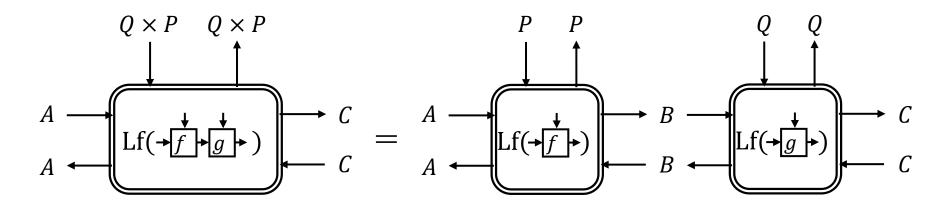
- ・アーキテクチャ(P, f): $A \rightarrow B$ からlearner Lf(P, f): $A \rightarrow B$ を構成
 - get関数:パラメータpと入力aから予測 $\hat{b} = f(p,a)$ を計算
 - put関数:正解bを基にパラメータpと入力aを修正(更新)
 - pの修正:勾配降下法 $p' \coloneqq p \nabla_p L$ aの修正: $a' \coloneqq (\nabla_a e(a, -))^{-1}(\nabla_a L)$
 - - 例(誤差関数が二乗和誤差): $a' = a \nabla_a L$



- 1. 既存研究
 - a. 圏論的な準備
 - b. Cruttwellらの構成の紹介
 - c. Fongらの構成の紹介
 - I. Fongらの構成の性質
- 2. 新規結果
- 3. 結果の応用

Fongらの構成の性質:関手性 [Fong+ '19]

• Lfは関手性 (Lf: Para(C) → Para(Lens(C)))を持つ

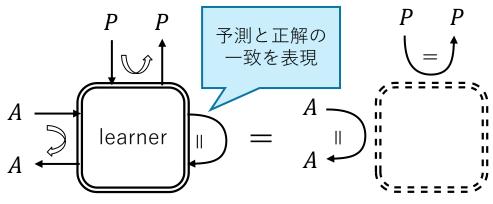


⇒アーキテクチャの結合よりもlearnerの合成の方が汎用的

• 例:全く異なるメカニズムで動作するlearner同士の合成が可能

Fongらの構成の性質:GetPut則 [Fong & Johnson '19]

- Lfで構成したlearnerはGetPut則を満たす
 - レンズにおける代数的な性質
 - 例(learner):予測 \hat{b} と正解bが一致 \Longrightarrow 入力aとパラメータpを修正しない
 - ・パラメータ更新の収束性に関して望ましい性質

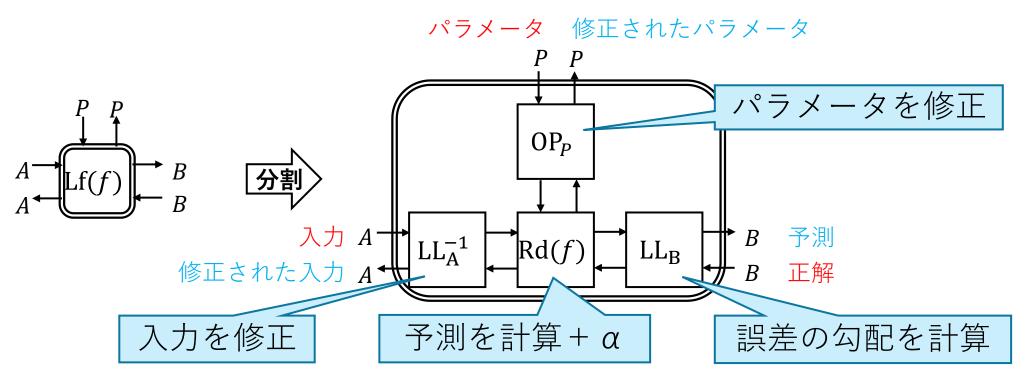


• ただし適切な誤差関数が必要(例:二乗和誤差)

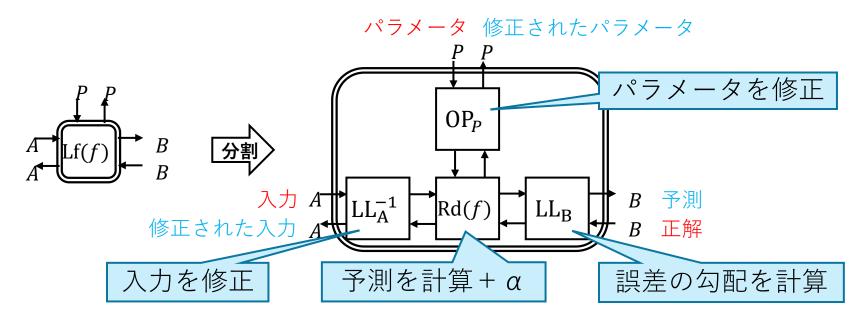
- 1. 既存研究
- 2. 新規結果
 - a. Lfのモジュール化による新規構成の定義
 - b. Lfの性質のモジュールへの帰着
 - I. Fongらの構成のwell-defined性
- 3. 結果の応用

learnerの構成のモジュール化

• learner Lf(f)を(Crutwellらに倣って)モジュール化 ⇒ 4つのレンズLL $_B$, Rd(f), LL $_A^{-1}$, OP $_P$ からlearnerを構成できる



learner構成の一般化

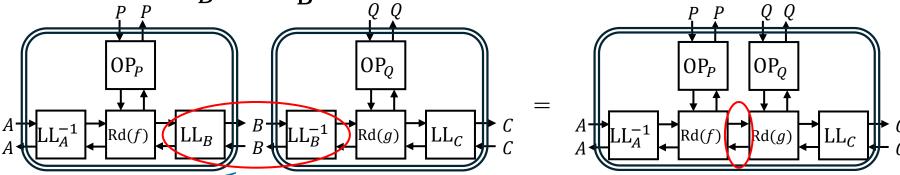


- learner構成のモジュール化 \Longrightarrow 各モジュールを一般化
 - 最適化計算OP:勾配降下法のみ → Momentum, Adagrad [Cruttwell+ '23]など
 - 誤差の計算LL(+LL⁻¹):二乗和誤差のみ→
 平均二乗誤差・ソフトマックス交差エントロピー(SCE) [Cruttwell+ '23]など

- 1. 既存研究
- 2. 新規結果
 - a. Lfのモジュール化による新規構成の定義
 - b. Lfの性質のモジュールへの帰着
 - I. Fongらの構成のwell-defined性
- 3. 結果の応用

learner構成の性質の構成モジュールへの帰着

入力の修正:
$$a'\coloneqq (\nabla_a e(a,-))^{-1}(\nabla_a L)$$

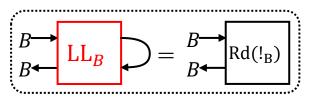


LL_RとLL_E¹が相殺

• GetPut則: LL, LL⁻¹, OPの以下の性質に帰着 → アーキテクチャの結合を保つ

アーキテクチャ+α同士が隣接

次の三つの等式が成り立つ → 構成した全learnerがGetPut則を満たす



$$A \longrightarrow LL_A^{-1} \longrightarrow Rd(!_A) = A \longrightarrow$$

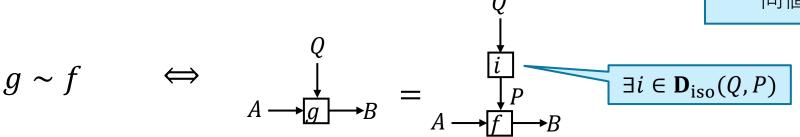
$$P \longrightarrow OP_P \longrightarrow Rd(!_P) = P \longrightarrow$$

- 1. 既存研究
- 2. 新規結果
 - a. Lfのモジュール化による新規構成の定義
 - b. Lfの性質のモジュールへの帰着
 - I. Fongらの構成のwell-defined性
- 3. 結果の応用

アーキテクチャ(やlearner)の同一視

- Para(C) (やPara(Lens(C))) の射は同値関係~で割られる
 - 適切な同値類によってbicategoryからcategoryになる
 - Cの (対称モノイダル) 部分圏Dを取る
 - 以下のように同値関係を定義する

Cruttwellらの構成では strictificationを使用 同値類は不使用



- ⇒アーキテクチャはパラメータ側における圏Dの操作で不変
 - Dの一般例 Iso(C): Cにおける同型射のみからなる部分圏
 - Dの新規例 C_S : Cにおける自明な同型射のみからなる部分圏
 - 自明な同型射:identity, associator, unitor, symmetryから構成

関手LfのWell-defined性

Para(C) Para(Lens(C)) $g \sim f \Rightarrow Lf(g) \sim Lf(f)$ が成り立つ必要がある $Q \sim f \Rightarrow Lf(g) \sim Lf(f)$ $Q \sim f \Rightarrow Lf(g) \sim Lf(f)$ $Q \sim f \Rightarrow Lf(g) \sim Lf(f)$ $A \rightarrow g \rightarrow B$ $A \rightarrow f \rightarrow B$ $A \rightarrow f \rightarrow B$ $A \rightarrow f \rightarrow B$

• Fongらによる同値関係:部分圏Iso(C)と特殊な部分圏を用いて定義

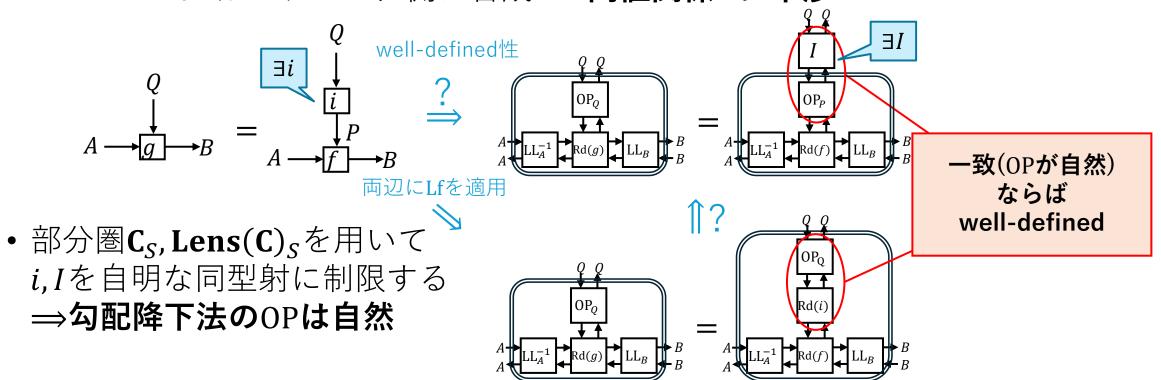
•
$$i = \phi$$
, $I = \stackrel{\downarrow}{\psi}$ $\stackrel{\uparrow}{\psi}$ $(\phi, \psi \text{は} \mathbf{C} \text{の任意の同型射}) \Rightarrow 成り立たない$

•新規同値関係:部分圏 C_S , Lens(C) $_S$ によって定義

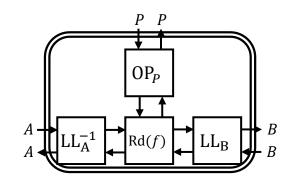
•
$$i = \phi$$
, $I = \psi$ ψ^{-1} $(\phi, \psi \text{は} \mathbf{C} \text{の任意の自明な同型射}) \Rightarrow 成り立つ$

関手Lfのwell-defined性のモジュールへの帰着

- well-defined性:OPの**自然性**に帰着
 - レンズOPはパラメータ側に合成 \Rightarrow **同値関係~に干渉**



モジュールの具体例の評価



- 性質のモジュールへの帰着 → 各モジュールの"**健全性"が評価可能に**
 - LLとLL⁻¹が**互いに同型** → 関手性
 - LL, LL⁻¹, OPが左の性質を満たす → GetPut則
 - OPが自然 → well-defined性
- LL, LL⁻¹, OPの具体例を調査
 - モジュールの性質からlearner構成の性質が導出できる

$B \longrightarrow LL_B$	= B = B = B	Rd(! _B)
$A \longrightarrow LL_A^{-1}$	$Rd(!_A)$	= A
$P \longrightarrow OP_P$	$Rd(!_p)$	= P

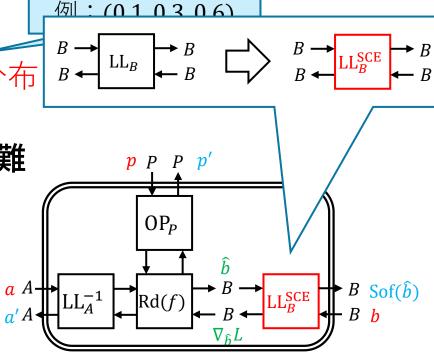
OP	GetPut	well-defined
勾配降下法	0	\circ
Momentum, Adagrad	×	\circ

LL ⁻¹	LL	GetPut	関手性	
二乗和誤差	二乗和誤差	0	0	
平均二乗誤差	平均二乗誤差	\circ	0	
二乗和誤差	SCE	0	×	

- 1. 既存研究
- 2. 新規結果
- 3. 結果の応用
 - a. 確率分布に対応したlearner構成の定義
 - b. モジュールの性質からの構成の性質の導出

分類タスクを学習するlearner

- タスクによって訓練データの形式が異なる
 - ・回帰タスク → 入力:ベクトル 正解:ベクトル
 - 回帰learner:回帰タスクを学習するlearner
 - 例:二乗和誤差を用いるLf(f)
 - ・分類タスク→入力:ベクトル 正解:有限確率分布
 - 分類learner: 分類タスクを学習するlearner
 - Fongらの手法では分類learnerの構成が困難
- 新規構成による分類learner
 - LL_B の代わりに特殊なレンズ LL_B^{SCE} を使用
 - 確率分布の比較に対応
 - ・モジュール化により容易に置換可能

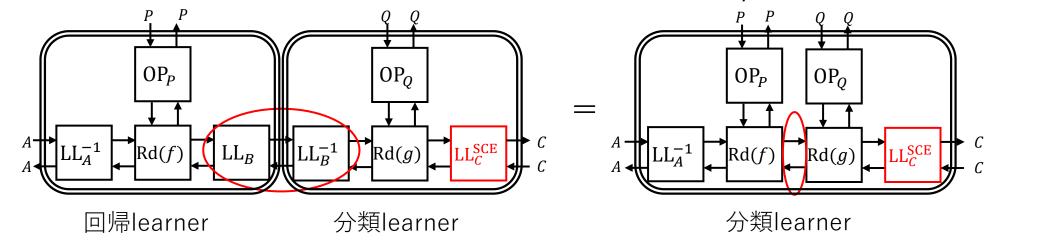


例: (1.5, -8, 40)

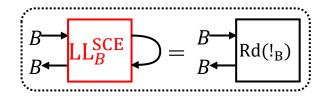
- 1. 既存研究
- 2. 新規結果
- 3. 結果の応用
 - a. 確率分布に対応したlearner構成の定義
 - b. モジュールの性質からの構成の性質の導出

分類learner構成の性質の導出

- 関手性:満たさないが、現実的な範囲では成り立つ
 - ・実用上、分類learnerが現れるのは「回帰learner;分類learner」の形のみ



- GetPut則: OP, LL⁻¹が帰着された性質を満たせば成り立つ
 - \bullet LL $_{B}^{ ext{SCE}}$ は帰着された性質を満たす
- well-defined性: 回帰learnerと同様



まとめ・既存研究との比較

Cruttwellらの 構成の長所

Fongらの 構成の長所

- Fongらのlearner構成を Cruttwellらの手法でモジュール化し一般化
- その具体例で以下を評価
 - ・関手性
 - GetPut則
 - · well-defined性
- 分類タスクを 学習するlearner構成を提案

正解が ベクトル	モジュール 化の種類	学習の構成	微分の 一般化	最適化手法 の一般化	関手性	GetPut 則
Cruttwell+	学習構成	0	0	0	N/A	N/A
Fong+	learner	0	×	×	0	\circ
新規	両方	0	0	0	0	0
正解が 確率分布	モジュール 化の種類	学習の構成	微分の 一般化	最適化手法 の一般化	関手性	GetPut 則
Cruttwell+	学習構成	0	0	0	N/A	N/A
Fong+	learner	\triangle	×	×	0	×
新規	両方	0	0	0	Δ	0

付録A:学習手法のモジュール化の例

• 教師強制:訓練に近似を導入する手法の一つ

• 学習の効率が上がる

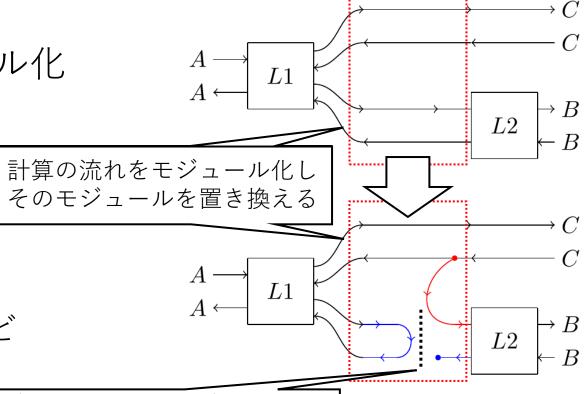
• learner自身によるモジュール化

・教師強制もモジュール化可能

・教師強制の適用はモジュールの置換

利点:レンズがlearnerで なくとも適用できる

• 例:ベイズ学習,線形回帰など



直感: *L*1と*L*2の依存関係を 近似によって分断 L1, L2: learner

付録A:教師強制の拡張

•新発見:左上にL3が存在しても、 教師強制が適用できる

⇒拡張された教師強制を ignoringと呼ぶことにする

実際の計算の変化:赤線に流れる値が変化 訓練データeC

ightarrow 修正された入力 \in C ightharpoonder Fongson構成特有の

操作で得られる値

これで本当に学習ができる?

• 現状:学習は可能だがほとんどの場合で性能は落ちる

L1, L2, L3: learner

