A categorical approach to Gödel's incompleteness via arithmetic universes

Yuto Ikeda

Graduate School of Mathematical Sciences, The University of Tokyo

CSCAT 2025 at Sojo University, Kumamoto 2025/03/11

This work is supported by FoPM, WINGS Program, The University of Tokyo.

Yuto Ikeda (UTokyo)

Backgrounds

- In 1973, André Joyal gave a categorical interpretation of Gödel's incompleteness theorems in his lecture, introducing certain categories called arithmetic universes (AUs) (Joyal 2005).
- However, his work has not been published.
- Although the notion of AUs has been studied by several authors, a precise description of its applications to incompleteness has mostly not been publicly available until now, as far as I know.
- In this talk, I present my own arrangement of Joyal's idea based on a recent literature (Dijk and Oldenziel 2020). I hope it is helpful for reconstruction, refinement and expansion of his insight.

Outline

AUs via categorical logic

Internal initial AU and logical concepts

Categorical proofs of incompleteness

Conclusions

Outline

AUs via categorical logic

Internal initial AU and logical concepts

Categorical proofs of incompleteness

Conclusions

Basic observation in categorical logic

There are correspondences between them as (Maietti 2005):

extensional DTT	category
dependent sum Σ , unit 1,	finite limits
extensional identity =	
exists \exists / prop. truncation $\ -\ $	stable image
or \vee	stable union of subobjects
disjoint sum +, empty 0	stable disjoint coproduct
effective quotient	stable effective quotient
natural numbers type $\mathbb N$	(parameterized) NNO
list type $List(A)$	(parameterized) list object
dependent product Π (\forall)	exponential in slice categories
type of propositions Prop	subobject classifier

For example, a **topos** (with an NNO) has all of the structures in this table:

extensional DTT	category
dependent sum Σ , unit 1,	finite limits
extensional identity =	
exists \exists / prop. truncation $\ -\ $	stable image
or \vee	stable union of subobjects
disjoint sum +, empty 0	stable disjoint coproduct
effective quotient	stable effective quotient
natural numbers type $\mathbb N$	(parameterized) NNO
list type $List(A)$	(parameterized) list object
dependent product Π (\forall)	exponential in slice categories
type of propositions Prop	subobject classifier

In contrast, a **pretopos** has only those structures:

extensional DTT	category
dependent sum Σ , unit 1, extensional identity —	finite limits
exists \exists / prop. truncation $\ -\ $	stable image
or \vee	stable union of subobjects
disjoint sum +, empty 0	stable disjoint coproduct
effective quotient	stable effective quotient
natural numbers type $\mathbb N$	(parameterized) NNO
list type $List(A)$	(parameterized) list object
dependent product Π (\forall)	exponential in slice categories
type of propositions Prop	subobject classifier

... and, an **arithmetic universe** is a category with here.

extensional DTT	category
dependent sum Σ , unit 1,	finite limits
extensional identity =	
exists \exists / prop. truncation $\ -\ $	stable image
or \vee	stable union of subobjects
disjoint sum +, empty 0	stable disjoint coproduct
effective quotient	stable effective quotient
natural numbers type $\mathbb N$	(parameterized) NNO
list type $List(A)$	(parameterized) list object
dependent product Π (\forall)	exponential in slice categories
type of propositions Prop	subobject classifier

Definition of AU

Definition (Maietti 2003)

An **arithmetic universe (AU)** is a pretopos which has parameterized list objects for any objects.

The internal languages of an AU have

- type constructors $1, \times, 0, +, \Sigma, A/R, \mathbb{N}, \text{List}(A)$,
- logical connectives $=, \top, \land, \bot, \lor, \exists$,

but it lacks

- type constructors \rightarrow , Π , Prop,
- logical connectives $\neg, \rightarrow, \forall$.

11 / 30

Mathematics in AU

Although AUs have weaker structures than topoi, some extent of (strongly predicative) mathematics can be done in AUs:

- (Π_2 -fragments of) I Σ_1 arithmetic (Ye, 2022)
 - Since AUs do not have \forall , only Σ_1 -formulas are expressible.
- Construction of algebras from generators and relations
 - It makes essential use of lists and quotients.
- Free construction of categories and presheaves from graphs (Maietti, 2003)

Outline

AUs via categorical logic

Internal initial AU and logical concepts

Categorical proofs of incompleteness

Conclusions

Initial AU

An **AU-functor** is a functor preserving the structures of an AU.

Proposition

There is the **initial AU** \mathcal{A}_0 in the sense that, for any AU \mathcal{A} , there is an AU-functor $F : \mathcal{A}_0 \to \mathcal{A}$ unique up to natural isomorphism.

In fact, we have a **specific construction** of \mathcal{A}_0 : it is just the **syntactic category** of a certain dependent type theory. (Joyal gave a more "down-to-earth" construction of \mathcal{A}_0 .)

Internal initial AU

Key observation: the construction of a syntactic category only involves basic operations to **finite lists** of symbols and taking **quotients**.

Proposition–Definition (Morrison 1996), (Maietti 2003), (Vickers 2019)

The construction of the initial AU can be performed within internal languages of AUs, specifically in \mathcal{A}_0 .

It gives rise to the internal category (or the "internal AU") \mathbb{A}_0 in \mathcal{A}_0 , called the **internal initial AU**.

 \mathcal{A}_0 and \mathbb{A}_0 correspond to a **meta theory** and an **object theory** respectively.

Externalization

Let $\Gamma := \operatorname{Hom}(1, -) : \mathcal{C} \to \operatorname{Set}$, the global sections functor of \mathcal{C} .

Definition

For an internal category \mathbb{C} in \mathcal{C} , its **externalization** $\text{Ext}(\mathbb{C})$ is the small category which is the image of \mathbb{C} by $\Gamma : \mathcal{C} \to \text{Set}$.

 $Ext(\mathbb{C})$ corresponds to a theory consisting of **closed terms** in the meta theory \mathcal{C} denoting syntactic entities (terms, formulas, ...) of the object theory \mathbb{C} .

16 / 30

Internalization of global sections and subobjects

Using $\operatorname{Ext}(\mathbb{C})$, we can define ordinary functors for \mathbb{C} in \mathcal{C} , such as **the global sections functor** $\Gamma_{\mathbb{C}} : \operatorname{Ext}(\mathbb{C}) \to \mathcal{C}$, **the subobject functor** $\operatorname{Sub}_{\mathbb{C}} : \operatorname{Ext}(\mathbb{C})^{\operatorname{op}} \to \mathcal{C}$, **pullbacks** $\operatorname{ev}_a : \Gamma_{\mathbb{C}}(a) \times \operatorname{Sub}_{\mathbb{C}}(a) \to \operatorname{Sub}_{\mathbb{C}}(1_{\mathbb{C}})$ for $a \in \operatorname{Ext}(\mathbb{C})$, ... if we assume \mathcal{C} or \mathbb{C} has sufficient structures.

Gödel coding functor

Proposition

 $Ext(\mathbb{A}_0)$ is an AU.

Definition

The unique AU-functor $[-]: \mathcal{A}_0 \to \text{Ext}(\mathbb{A}_0)$ is called **Gödel coding functor**.

This functor sends entities of the meta theory \mathcal{A}_0 into closed terms denoting corresponding entities of the object theory \mathbb{A}_0 . It corresponds to taking **numerals of Gödel numbers** $\varphi \mapsto \overline{\left[\varphi \right]}$.

Provability functor

Definition (Dijk and Oldenziel 2020)

The **provability functor** \Box for \mathcal{A}_0 is an endofunctor

$$\mathcal{A}_0 \xrightarrow{\ulcorner_\urcorner} \operatorname{Ext}(\mathbb{A}_0) \xrightarrow{\Gamma_{\mathbb{A}_0}} \mathcal{A}_0.$$

In fact, $\Gamma_{\mathbb{C}}$ acts on subterminals in \mathbb{C} as taking an equalizer with $\top_{\mathbb{C}}$, so it serves as a **provability predicate** on subterminals.

The functor \Box generalizes classical provability $\Box \varphi :\equiv \Pr(\lceil \varphi \rceil)$ to the whole syntactic category (without non-canonical coding)!

Remark. $\Gamma_{\mathbb{A}_0}$ is NOT an AU-functor.

Outline

AUs via categorical logic

Internal initial AU and logical concepts

Categorical proofs of incompleteness

Conclusions

20 / 30

Construction of an undecidable sentence

Since the Gödel sentence is a Π_1 -sentence, which is not expressible in AUs, we construct **the Jeroslow sentence** $J \leftrightarrow \Box \neg J$ instead.

Lemma

We can construct a subterminal $J \rightarrow 1$ in \mathcal{A}_0 such that J is an equalizer of $\lceil J \rceil, \lceil \bot \rceil : 1 \rightrightarrows \operatorname{Sub}_{\mathbb{A}_0}(\lceil 1 \rceil)$.

Proof sketch. The diagonal argument.

Construction of an undecidable sentence

Proof. Let *N* be the NNO in \mathcal{A}_0 . We can construct:

enumeration of formulas point-surjective $e: N \twoheadrightarrow \operatorname{Sub}_{\mathbb{A}_0}(\lceil N \rceil)$, numeral function $\eta_N: N \to \Gamma_{\mathbb{A}_0}(\lceil N \rceil)$, which expresses $n \mapsto \lceil n \rceil$.

Using them, make the pullback

 $\begin{array}{c} D & \longrightarrow 1 \\ & & \downarrow \\ & & & \downarrow \\ & N & \stackrel{\Delta_N}{\longrightarrow} N \times N \xrightarrow{\eta_N \times e} \Gamma_{\mathbb{A}_0}(\lceil N \rceil) \times \operatorname{Sub}_{\mathbb{A}_0}(\lceil N \rceil) \xrightarrow{\operatorname{ev}_{\lceil N \rceil}} \operatorname{Sub}_{\mathbb{A}_0}(\lceil 1 \rceil). \end{array}$ $D & \rightarrowtail N \text{ expresses the predicate of } n \text{ which states } "\varphi_n(n) \text{ is provably equivalent to } \bot \text{ in } \mathbb{A}_0, " \text{ or concisely, } \Box \neg \varphi_n(n). \end{array}$

Construction of an undecidable sentence

Since *e* is point-surjective, we have $n : 1 \rightarrow N$ such that

Let the subterminal $J \in Sub(1)$ be the pullback of $D \rightarrow N$ along n.

Since the bottom side is equal to $\lceil J \rceil$, the lemma follows.

Yuto Ikeda (UTokyo)

First incompleteness theorem

Lemma (repeat)

$$J \rightarrow 1$$
 is an equalizer of $\lceil J \rceil, \lceil \bot \rceil : 1 \rightrightarrows \operatorname{Sub}_{\mathbb{A}_0}(\lceil 1 \rceil)$.

Theorem (first incompleteness theorem)

 $J \in Sub(1)$ is not equivalent to \bot nor \top .

Proof. If $J \cong \bot$, then $\lceil J \rceil = \lceil \bot \rceil$, hence their equalizer J is equivalent to \top . So $\top \cong J \cong \bot$, which contradicts to non-triviality of \mathcal{A}_0 .

If $J \cong \top$, then the lemma says $\lceil \top \rceil$ and $\lceil \bot \rceil$ are the same. Applying the unique AU-functor $\mathcal{A}_0 \to \mathbf{Set}$, it follows that \top and \bot in \mathcal{A}_0 are the same, which contradicts to non-triviality of \mathcal{A}_0 again.

Freyd cover and Σ_1 -completeness

Lemma (Freyd cover of \mathbb{A}_0)

The comma category $\widehat{\mathbb{A}_0} := \operatorname{id}_{\mathcal{A}_0} \downarrow \Gamma_{\mathbb{A}_0}$ is an AU. Moreover, two forgetful functors Σ , p are AU-functors.

This gives a natural transformation $\eta : \operatorname{id}_{\mathcal{A}_0} \Rightarrow \Box$. $\eta_A : A \to \Box A$ corresponds to **formalized** Σ_1 -completeness of \mathbb{A}_0 in \mathcal{A}_0 .

Second incompleteness theorem

Theorem (second incompleteness theorem)

Let $Incon(\mathbb{A}_0) \in Sub(1)$ be the equalizer of $\lceil \bot \rceil$ and $\lceil \top \rceil$. Then, $Incon(\mathbb{A}_0) \cong \bot$.

Proof.

- 1. *J* is an equalizer of $\lceil J \rceil$ and $\lceil \bot \rceil$.
- 2. Since $\Box J$ is an equalizer of $\lceil J \rceil$ and $\lceil \top \rceil$ (\Box serves as provability), the Σ_1 -completeness $J \to \Box J$ implies that J equalizes $\lceil J \rceil$ and $\lceil \top \rceil$.
- 3. Therefore, *J* also equalizes $\lceil \bot \rceil$ and $\lceil \top \rceil$, i.e. $J \leq \text{Incon}(\mathbb{A}_0)$.

Hence, if $Incon(\mathbb{A}_0) \cong \bot$, then $J \cong \bot$, contradicting with the first incompleteness theorem.

Outline

AUs via categorical logic

Internal initial AU and logical concepts

Categorical proofs of incompleteness

Conclusions

27 / 30

Conclusions

Summary:

- The idea of "formalizing a theory in itself" can be interpreted in terms of internal categories.
- It might give a structural view to meta-object interactions, which seem unique and fascinating ideas in logic (to me).

Future work:

- Establish a precise proof, its refinement, and broader applications.
- Analyze properties of the provability functor \Box .
- Can we find other situations like "constructing itself in itself" interpreted/unified in the framework of internal/fibred categories?

References

- Dijk, Joost van, and Alexander Gietelink Oldenziel. 2020. "Gödel Incompleteness Through Arithmetic Universes After A. Joyal". arXiv. April 22, 2020. https://doi.org/10.48550/arXiv.2004.10482.
- Goodstein, R. L. 1954. "Logic-Free Formalisations of Recursive Arithmetic". *MATHEMATICA SCANDINAVICA* 2 (December):246–60. https://doi.org/10.7146/math.scand.a-10412.
- Jacobs, Bart. 2001. *Categorical Logic and Type Theory*. Paperback ed. Studies in Logic and the Foundations of Mathematics. Amsterdam: Elsevier.
- Johnstone, Peter. 2002. Sketches of an Elephant: A Topos Theory Compendium. Oxford Logic Guides. Oxford: Clarendon Press.
- Joyal, André. 2005. "The Gödel Incompleteness Theorem, A Categorical Approach". *Cahiers De Topologie Et Géométrie Différentielle Catégoriques* 46 (3): 202. http://www.numdam.org/item/CTGDC_2005__46_3_163_0/.
- Lambek, Joachim, and Philip J. Scott. 1994. *Introduction to Higher Order Categorical Logic*. Paperback ed. (with corr.), reprinted. Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge Univ. Press.

References

- Maietti, Maria Emilia. 2003. "Joyal's Arithmetic Universes via Type Theory". *Electronic Notes in Theoretical Computer Science*, CTCS'02, Category Theory and Computer Science, 69 (February):272–86. https://doi.org/10.1016/S 1571-0661(04)80569-3.
- Maietti, Maria Emilia. 2005. "Modular Correspondence between Dependent Type Theories and Categories Including Pretopoi and Topoi". *Mathematical Structures in Computer Science* 15 (6): 1089. https://doi.org/10. 1017/S0960129505004962.
- Maietti, Maria Emillia. 2010. "Joyal's Arithmetic Universe as List-Arithmetic Pretopos". *Theory and Applications of Categories* 24 (January).
- Morrison, Alan. 1996. "Reasoning in Arithmetic Universe."
- Román, Leopoldo. 1989. "Cartesian Categories with Natural Numbers Object". *Journal of Pure and Applied Algebra* 58 (3): 267–78. https://doi.org/10.1016/0022-4049(89)90042-X.
- Vickers, Steven. 2019. "Sketches for Arithmetic Universes". *Journal of Logic and Analysis* 11 (June). https://doi.org/ 10.4115/jla.2019.11.FT4.
- Ye, Lingyuan. 2023. "Categorical Structure in Theory of Arithmetic". arXiv. May 2, 2023. https://doi.org/10.48550/ arXiv.2304.05477.

Construction of the initial AU: Step 1

Let Σ_0 be the initial category with finite products and NNO. Explicitly, **Objects** $N^0, N^1, N^2, ...$ (finite products of N). **Morphisms** $N^k \rightarrow N$ are codes of primitive recursive functions with k variables, up to the congruence relation generated by the definition of each function and

 $\frac{f(\overline{x},0) \sim g(\overline{x},0) \quad f(\overline{x},Sy) \sim h(\overline{x},y,f(\overline{x},y)) \quad g(\overline{x},Sy) \sim h(\overline{x},y,g(\overline{x},y))}{f(\overline{x},y) \sim g(\overline{x},y)}$

Construction of the initial AU: Step 2

Let $Pred(\Sigma_0)$ be the category consists of:

Objects $P: N \to N$ in Σ_0 such that $P \times P = P$.

Intuitively, *P* indicates $P^{-1}(1) \subseteq N$ decidable by primitive recursions.

Morphisms $P \to Q$ are $f : N \to N$ in Σ_0 such that $P \leq Q \circ f$, up to the equivalence $f \sim g$ defined by $f \times P = g \times P$.

Remark. Pred(Σ_0) satisfies the axioms of AU except for exactness.

Construction of the initial AU: Step 3

- \mathcal{A}_0 is obtained as the exact completion of $\operatorname{Pred}(\Sigma_0)$. Explicitly:
- **Objects** Monic equivalence relations $R \rightrightarrows X$ in $Pred(\Sigma_0)$.
- **Morphisms** $(R \rightrightarrows X) \rightarrow (S \rightrightarrows Y)$ are equivalence classes of $f : X \rightarrow Y$ such that $R \subseteq (f \times f)^{-1}(S)$. The equivalence $f \sim g$ is defined by $R \subseteq (f \times g)^{-1}(S)$.

Global sections and provability

 $\Gamma_{\mathcal{C}}: \mathcal{C} \to \mathbf{Set}$ acts on subterminals as

$$\begin{split} &\operatorname{Sub}_{\mathcal{C}}(1_{\mathcal{C}}) \longrightarrow \mathcal{P}(\{*\}) \\ & A \longmapsto \{x \in \{*\} \mid A \cong \text{the maximal subterminal } \top_{\mathcal{C}}\}, \end{split}$$

which can be read as "the closed formula *A* is provable in C". In this sense, Γ_{C} includes the notion of **provability**.

This can be internalized;

 $\Gamma_{\mathbb{C}} : \operatorname{Ext}(\mathbb{C}) \to \mathcal{C}$ naturally induces $\Gamma_{\mathcal{C}}(\operatorname{Sub}_{\mathbb{C}}(1_{\mathbb{C}})) \to \operatorname{Sub}_{\mathcal{C}}(1_{\mathcal{C}})$, which serves as **provability predicates**. Another way to say this is taking the equalizer with $\top_{\mathbb{C}} \in \Gamma_{\mathcal{C}}(\operatorname{Sub}_{\mathbb{C}}(1_{\mathbb{C}}))$.

Global sections and provability

Proposition

Let $P : 1 \to \operatorname{Sub}_{\mathbb{C}}(1_{\mathbb{C}})$ be (a global element denoting) a subterminal in \mathbb{C} . Then, $\Gamma_{\mathbb{C}}(P)$ is an equalizer of P and the maximal subterminal $\top_{\mathbb{C}}$ in \mathbb{C} :

$$\Gamma_{\mathbb{C}}(P) \longmapsto 1 \xrightarrow[]{P}{} \operatorname{Sub}_{\mathbb{C}}(1_{\mathbb{C}})$$

In a syntactic category, coincidence with $\top \in Sub(1)$ means **provability** of the sentence.

The above says $\Gamma_{\mathbb{C}}$ serves as **provability predicates** on subterminals.