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Backgrounds

In 1973, André Joyal gave a categorical interpretation of Gödel’s
incompleteness theorems in his lecture, introducing certain categories
called arithmetic universes (AUs) (Joyal 2005).

However, his work has not been published.

Although the notion of AUs has been studied by several authors,
a precise description of its applications to incompleteness has mostly
not been publicly available until now, as far as I know.

In this talk, I present my own arrangement of Joyal’s idea based on
a recent literature (Dijk and Oldenziel 2020). I hope it is helpful for
reconstruction, refinement and expansion of his insight.
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Key idea

logic category
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meta theory

object theory
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category

internal category
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Basic observation in categorical logic
syntactic category

internal language

logic / type theory
(logical theory / specification)

category⊥

higher order logic topos
regular logic regular categorylogic

⋮ ⋮

⇣ “propositions as some types” ⇣

type theory extensional dependent type theory finitely complete
(1-)category
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Type constructors and structures on categories

There are correspondences between them as (Maietti 2005):

extensional DTT category
dependent sum Σ, unit 1,
extensional identity = finite limits

exists ∃ / prop. truncation ‖−‖ stable image
or ∨ stable union of subobjects
disjoint sum +, empty 0 stable disjoint coproduct
effective quotient stable effective quotient
natural numbers type ℕ (parameterized) NNO
list type List(𝐴) (parameterized) list object
dependent product Π (∀) exponential in slice categories
type of propositions Prop subobject classifier
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Type constructors and structures on categories

For example, a topos (with an NNO) has all of the structures in this table:

extensional DTT category
dependent sum Σ, unit 1,
extensional identity = finite limits

exists ∃ / prop. truncation ‖−‖ stable image
or ∨ stable union of subobjects
disjoint sum +, empty 0 stable disjoint coproduct
effective quotient stable effective quotient
natural numbers type ℕ (parameterized) NNO
list type List(𝐴) (parameterized) list object
dependent product Π (∀) exponential in slice categories
type of propositions Prop subobject classifier
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Type constructors and structures on categories

In contrast, a pretopos has only those structures:

extensional DTT category
dependent sum Σ, unit 1,
extensional identity = finite limits

exists ∃ / prop. truncation ‖−‖ stable image
or ∨ stable union of subobjects
disjoint sum +, empty 0 stable disjoint coproduct
effective quotient stable effective quotient
natural numbers type ℕ (parameterized) NNO
list type List(𝐴) (parameterized) list object
dependent product Π (∀) exponential in slice categories
type of propositions Prop subobject classifier
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Type constructors and structures on categories

… and, an arithmetic universe is a category with here.

extensional DTT category
dependent sum Σ, unit 1,
extensional identity = finite limits

exists ∃ / prop. truncation ‖−‖ stable image
or ∨ stable union of subobjects
disjoint sum +, empty 0 stable disjoint coproduct
effective quotient stable effective quotient
natural numbers type ℕ (parameterized) NNO
list type List(𝐴) (parameterized) list object
dependent product Π (∀) exponential in slice categories
type of propositions Prop subobject classifier
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Definition of AU
Definition (Maietti 2003)

An arithmetic universe (AU) is a pretopos which has parameterized list
objects for any objects.

The internal languages of an AU have

type constructors 1, ×, 0, +, Σ, 𝐴/𝑅, ℕ, List(𝐴),
logical connectives =, ⊤, ∧, ⊥, ∨, ∃,

but it lacks

type constructors →, Π, Prop,
logical connectives ¬, →, ∀.
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Mathematics in AU

Although AUs have weaker structures than topoi,
some extent of (strongly predicative) mathematics can be done in AUs:

(Π2-fragments of) IΣ1 arithmetic (Ye, 2022)
Since AUs do not have ∀, only Σ1-formulas are expressible.

Construction of algebras from generators and relations
It makes essential use of lists and quotients.

Free construction of categories and presheaves from graphs (Maietti, 2003)
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Initial AU

An AU-functor is a functor preserving the structures of an AU.

Proposition
There is the initial AU 𝒜0 in the sense that, for any AU 𝒜,
there is an AU-functor 𝐹 : 𝒜0 → 𝒜 unique up to natural isomorphism.

In fact, we have a specific construction of 𝒜0:
it is just the syntactic category of a certain dependent type theory.

(Joyal gave a more “down-to-earth” construction of 𝒜0.)
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Internal initial AU

Key observation: the construction of a syntactic category only involves
basic operations to finite lists of symbols and taking quotients.

Proposition–Definition (Morrison 1996), (Maietti 2003), (Vickers 2019)

The construction of the initial AU can be performed within
internal languages of AUs, specifically in 𝒜0.

It gives rise to the internal category (or the “internal AU”) 𝔸0 in 𝒜0,
called the internal initial AU.

𝒜0 and 𝔸0 correspond to a meta theory and an object theory respectively.
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Externalization

Let Γ ≔ Hom(1, −) : 𝒞 → Set, the global sections functor of 𝒞.

Definition
For an internal category ℂ in 𝒞, its externalization Ext(ℂ) is the small
category which is the image of ℂ by Γ : 𝒞 → Set.

Ext(ℂ) corresponds to a theory consisting of closed terms in the meta
theory 𝒞 denoting syntactic entities (terms, formulas, …) of the object
theory ℂ.
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Internalization of global sections and subobjects

Using Ext(ℂ), we can define ordinary functors for ℂ in 𝒞, such as

the global sections functor Γℂ : Ext(ℂ) → 𝒞,

the subobject functor Subℂ : Ext(ℂ)op → 𝒞,

pullbacks ev𝑎 : Γℂ(𝑎) × Subℂ(𝑎) → Subℂ(1ℂ) for 𝑎 ∈ Ext(ℂ),

… if we assume 𝒞 or ℂ has sufficient structures.
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Gödel coding functor

Proposition
Ext(𝔸0) is an AU.

Definition
The unique AU-functor ⌜−⌝ : 𝒜0 → Ext(𝔸0) is called Gödel coding
functor.

This functor sends entities of the meta theory 𝒜0 into closed terms
denoting corresponding entities of the object theory 𝔸0.
It corresponds to taking numerals of Gödel numbers 𝜑 ↦ ⌜𝜑⌝.
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Provability functor
Definition (Dijk and Oldenziel 2020)

The provability functor □ for 𝒜0 is an endofunctor

𝒜0 ⟶⌜−⌝ Ext(𝔸0) ⟶
Γ𝔸0

𝒜0.

In fact, Γℂ acts on subterminals in ℂ as taking an equalizer with ⊤ℂ,
so it serves as a provability predicate on subterminals.

The functor □ generalizes classical provability □𝜑 :≡ Pr(⌜𝜑⌝)
to the whole syntactic category (without non-canonical coding)!

Remark. Γ𝔸0
 is NOT an AU-functor.
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Construction of an undecidable sentence

Since the Gödel sentence is a Π1-sentence, which is not expressible in AUs,
we construct the Jeroslow sentence 𝐽 ↔ □¬𝐽  instead.

Lemma
We can construct a subterminal 𝐽 ↣ 1 in 𝒜0 such that 𝐽  is an equalizer
of ⌜𝐽⌝, ⌜⊥⌝ : 1 ⇉ Sub𝔸0

(⌜1⌝).

Proof sketch. The diagonal argument. □
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Construction of an undecidable sentence
Proof. Let 𝑁  be the NNO in 𝒜0. We can construct:

enumeration of formulas point-surjective 𝑒 : 𝑁 ↠ Sub𝔸0
(⌜𝑁⌝),

numeral function 𝜂𝑁 : 𝑁 → Γ𝔸0
(⌜𝑁⌝), which expresses 𝑛 ↦ ⌜𝑛⌝.

Using them, make the pullback

⌜⊥⌝
Δ𝑁 𝜂𝑁 × 𝑒 ev⌜𝑁⌝

𝐷 1

𝑁 𝑁 × 𝑁 Γ𝔸0
(⌜𝑁⌝) × Sub𝔸0

(⌜𝑁⌝) Sub𝔸0
(⌜1⌝).

𝐷 ↣ 𝑁  expresses the predicate of 𝑛 which states “𝜑𝑛(𝑛) is provably
equivalent to ⊥ in 𝔸0,” or concisely, □¬𝜑𝑛(𝑛).
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Construction of an undecidable sentence
Since 𝑒 is point-surjective, we have 𝑛 : 1 → 𝑁  such that

⌜𝐷⌝

𝑛
𝑒

𝑁

1 Sub𝔸0
(⌜𝑁⌝).

Let the subterminal 𝐽 ∈ Sub(1) be the pullback of 𝐷 ↣ 𝑁  along 𝑛.

⌜⊥⌝
Δ𝑁 𝜂𝑁 × 𝑒 ev⌜𝑁⌝𝑛

𝐷 1

𝑁 𝑁 × 𝑁 Γ𝔸0
(⌜𝑁⌝) × Sub𝔸0

(⌜𝑁⌝) Sub𝔸0
(⌜1⌝)

𝐽

1

Since the bottom side is equal to ⌜𝐽⌝, the lemma follows. □
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First incompleteness theorem
Lemma (repeat)
𝐽 ↣ 1 is an equalizer of ⌜𝐽⌝, ⌜⊥⌝ : 1 ⇉ Sub𝔸0

(⌜1⌝).

Theorem (first incompleteness theorem)
𝐽 ∈ Sub(1) is not equivalent to ⊥ nor ⊤.

Proof. If 𝐽 ≅ ⊥, then ⌜𝐽⌝ = ⌜⊥⌝, hence their equalizer 𝐽  is equivalent to ⊤.
So ⊤ ≅ 𝐽 ≅ ⊥, which contradicts to non-triviality of 𝒜0.

If 𝐽 ≅ ⊤, then the lemma says ⌜⊤⌝ and ⌜⊥⌝ are the same. Applying the
unique AU-functor 𝒜0 → Set, it follows that ⊤ and ⊥ in 𝒜0 are the same,
which contradicts to non-triviality of 𝒜0 again. □
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Freyd cover and Σ1-completeness

Lemma (Freyd cover of 𝔸0)
The comma category 𝔸0 ≔ id𝒜0

↓ Γ𝔸0
 is an AU. Moreover, two forgetful

functors Σ, 𝑝 are AU-functors.

AU-functor

⌜−⌝

Σ

𝑝

Γ𝔸0

id𝒜0

𝒜0 𝔸0 𝒜0

Ext(𝔸0) 𝒜0

= ⟹

This gives a natural transformation 𝜂 : id𝒜0
⇒ □.

𝜂𝐴 : 𝐴 → □𝐴 corresponds to formalized Σ1-completeness of 𝔸0 in 𝒜0.
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Second incompleteness theorem

Theorem (second incompleteness theorem)
Let Incon(𝔸0) ∈ Sub(1) be the equalizer of ⌜⊥⌝ and ⌜⊤⌝.
Then, Incon(𝔸0) ≇ ⊥.

Proof.
1. 𝐽  is an equalizer of ⌜𝐽⌝ and ⌜⊥⌝.
2. Since □𝐽  is an equalizer of ⌜𝐽⌝ and ⌜⊤⌝ (□ serves as provability),

the Σ1-completeness 𝐽 → □𝐽  implies that 𝐽  equalizes ⌜𝐽⌝ and ⌜⊤⌝.
3. Therefore, 𝐽  also equalizes ⌜⊥⌝ and ⌜⊤⌝, i.e. 𝐽 ≤ Incon(𝔸0).

Hence, if Incon(𝔸0) ≅ ⊥, then 𝐽 ≅ ⊥, contradicting with the first
incompleteness theorem. □
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Conclusions
Summary:

The idea of “formalizing a theory in itself” can be interpreted
in terms of internal categories.
It might give a structural view to meta-object interactions,
which seem unique and fascinating ideas in logic (to me).

Future work:

Establish a precise proof, its refinement, and broader applications.
Analyze properties of the provability functor □.
Can we find other situations like “constructing itself in itself”
interpreted/unified in the framework of internal/fibred categories?
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Construction of the initial AU: Step 1

Let Σ0 be the initial category with finite products and NNO. Explicitly,

Objects 𝑁0, 𝑁1, 𝑁2, … (finite products of 𝑁 ).
Morphisms 𝑁𝑘 → 𝑁  are codes of primitive recursive functions

with 𝑘 variables, up to the congruence relation generated by
the definition of each function and

𝑓(𝑥, 0) ∼ 𝑔(𝑥, 0) 𝑓(𝑥, 𝑆𝑦) ∼ ℎ(𝑥, 𝑦, 𝑓(𝑥, 𝑦)) 𝑔(𝑥, 𝑆𝑦) ∼ ℎ(𝑥, 𝑦, 𝑔(𝑥, 𝑦))
𝑓(𝑥, 𝑦) ∼ 𝑔(𝑥, 𝑦)
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Construction of the initial AU: Step 2

Let Pred(Σ0) be the category consists of:

Objects 𝑃 : 𝑁 → 𝑁  in Σ0 such that 𝑃 × 𝑃 = 𝑃 .

Intuitively, 𝑃  indicates 𝑃 −1(1) ⊆ 𝑁  decidable by primitive recursions.

Morphisms 𝑃 → 𝑄 are 𝑓 : 𝑁 → 𝑁  in Σ0 such that 𝑃 ≤ 𝑄 ∘ 𝑓 ,
up to the equivalence 𝑓 ∼ 𝑔 defined by 𝑓 × 𝑃 = 𝑔 × 𝑃 .

Remark. Pred(Σ0) satisfies the axioms of AU except for exactness.
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Construction of the initial AU: Step 3

𝒜0 is obtained as the exact completion of Pred(Σ0). Explicitly:

Objects Monic equivalence relations 𝑅 ⇉ 𝑋 in Pred(Σ0).

Morphisms (𝑅 ⇉ 𝑋) → (𝑆 ⇉ 𝑌 ) are equivalence classes of 𝑓 : 𝑋 → 𝑌
such that 𝑅 ⊆ (𝑓 × 𝑓)−1(𝑆).
The equivalence 𝑓 ∼ 𝑔 is defined by 𝑅 ⊆ (𝑓 × 𝑔)−1(𝑆).
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Global sections and provability
Γ𝒞 : 𝒞 → Set acts on subterminals as

Sub𝒞(1𝒞) ⟶ 𝒫({∗})
𝐴 ↦↦↦↦ {𝑥 ∈ {∗} | 𝐴 ≅ the maximal subterminal ⊤𝒞},

which can be read as “the closed formula 𝐴 is provable in 𝒞”.
In this sense, Γ𝒞 includes the notion of provability.

This can be internalized;
Γℂ : Ext(ℂ) → 𝒞 naturally induces Γ𝒞(Subℂ(1ℂ)) → Sub𝒞(1𝒞),
which serves as provability predicates.
Another way to say this is taking the equalizer with ⊤ℂ ∈ Γ𝒞(Subℂ(1ℂ)).

Yuto Ikeda (UTokyo) CSCAT 2025 A categorical approach to Gödel’s incompleteness via AUs 34 / 30



AUs via categorical logic Internal initial AU and logical concepts Categorical proofs of incompleteness Conclusions

Global sections and provability

Proposition
Let 𝑃 : 1 → Subℂ(1ℂ) be (a global element denoting) a subterminal in ℂ.
Then, Γℂ(𝑃 ) is an equalizer of 𝑃  and the maximal subterminal ⊤ℂ in ℂ:

𝑃

⊤ℂ

Γℂ(𝑃 ) 1 Subℂ(1ℂ)

In a syntactic category, coincidence with ⊤ ∈ Sub(1) means provability of
the sentence.

The above says Γℂ serves as provability predicates on subterminals.
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